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Translation-like actions by Z, the subgroup membership
problem, and Medvedev degrees of effective subshifts

Nicanor Carrasco-Vargas

Abstract. We show that every infinite, locally finite, and connected graph admits a translation-like
action by Z, and that this action can be taken to be transitive exactly when the graph has either one
or two ends. The actions constructed satisfy d(v, v * 1) < 3 for every vertex v. This strengthens a
theorem by Brandon Seward. We also study the effective computability of translation-like actions
on groups and graphs. We prove that every finitely generated infinite group with decidable word
problem admits a translation-like action by Z which is computable and satisfies an extra condition
which we call decidable orbit membership problem. As a nontrivial application of our results, we
prove that for every finitely generated infinite group with decidable word problem, effective sub-
shifts attain all H(l) Medvedev degrees. This extends a classification proved by Joseph Miller for
74,.d > 1.

1. Introduction

1.1. Translation-like actions by Z on locally finite graphs

A right action * of a group H on a metric space (X, d) is called a translation-like action
if it is free (thatis, x x h = x implies h = 1y, forx € X, h € H), and foreach h € H,
the set {d(x,x x h) | x € X} C R is bounded. If G is a finitely generated group endowed
with the left-invariant word metric associated with some finite set of generators, then the
action of any subgroup H on G by right translations (g, &) — gh is a translation-like
action. On the other hand, observe that despite the action H ~, G by left multiplication
is usually referred to as an action by translations, in general it is not translation-like for a
left-invariant word metric.

Following this idea, Kevin Whyte proposed in [41] to consider translation-like actions
as a generalization of subgroup containment and to replace subgroups by translation-like
actions in different questions or conjectures about groups and subgroups. This was called a
geometric reformulation. For example, the von Neumann conjecture asserted that a group
is nonamenable if and only if it contains a nonabelian free subgroup. Its geometric refor-
mulation asserts then that a group is nonamenable if and only if it admits a translation-like
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action by a nonabelian free group. While the conjecture was proven to be false [35], Kevin
Whyte proved that its geometric reformulation holds [41].

One problem left open in [41] was the geometric reformulation of Burnside’s problem.
This problem asked if every finitely generated infinite group contains Z as a subgroup, and
was answered negatively in [20]. Brandon Seward proved that the geometric reformulation
of this problem also holds.

Theorem 1.1 (Geometric Burnside’s problem [38]). Every finitely generated infinite
group admits a translation-like action by 7.

A finitely generated infinite group with two or more ends has a subgroup isomorphic
to Z, by Stalling’s structure theorem. Thus, it is the one-ended case that makes necessary
the use of translation-like actions. In order to prove Theorem 1.1, Brandon Seward proved
a more general graph theoretic result.

Theorem 1.2 ([38, Theorem 1.6]). Let I' be a connected and infinite graph whose ver-
tices have uniformly bounded degree. Then I" admits a transitive translation-like action
by Z if and only if it is connected and has either one or two ends.

This result proves Theorem 1.1 for groups with one or two ends, and indeed it says
more, as the translation-like action obtained is transitive. The proof of this result relies
strongly on the hypothesis of having uniformly bounded degree. Indeed, the uniform
bound on dr(v, v * 1) depends linearly on a uniform bound for the degree of the ver-
tices of the graph. Here, we strengthen Seward’s result by weakening the hypothesis to the
locally finite case and improving the bound on dr (v, v * 1) to 3.

Theorem 1.3. Let I" be an infinite, connected, and locally finite graph. Then I" admits a
transitive translation-like action by 7. if and only if it has either one or two ends. Moreover,
the action can be taken with d(v, v x 1) < 3 for every vertex v.

A problem left in [38, Problem 3.5] was to characterize which graphs admit a transi-
tive translation-like action by Z. Thus, we have solved the case of locally finite graphs,
and it only remains the case of graphs with vertices of infinite degree.

We now mention an application of these results to the problem of Hamiltonicity of
Cayley graphs. This is related to a special case of Lovdsz conjecture which asserts the
following: If G is a finite group, then for every set of generators the associated Cayley
graph admits a Hamiltonian path. Note that the existence of at least one such generating
set is obvious (S = G), and the difficulty of the question, which is still open, is that it
alludes every generating set. Now assume that G is an infinite group, S is a finite set of
generators, and Cay(G, S) admits a transitive translation-like action by Z. This action
becomes a bi-infinite Hamiltonian path after we enlarge the generating set, and thus it
follows from Seward’s theorem that every finitely generated group with one or two ends



The geometric subgroup membership problem 3

admits a generating set for which the associated Cayley graph admits a bi-infinite Hamil-
tonian path [16, Theorem 1.8]. It is an open question whether this holds for every Cayley
graph [16, Problem 4.8], but our result yields an improvement in this direction.

Corollary 1.4. Let G be a finitely generated group with one or two ends, and let S be
a finite set of generators. Then the Cayley graph of G with respect to the generating set
{g € G |ds(g,1) < 3} admits a bi-infinite Hamiltonian path.

This was known to hold for generating sets of the form {g € G | ds(g, 1g) < J},
where S C G is a finite generating set for G and J depends linearly on the vertex degrees
in Cay(G, S).

In the more general case where we impose no restrictions on ends, we obtain the fol-
lowing result for nontransitive translation-like actions. Observe that this readily implies
Theorem 1.1.

Theorem 1.5. Every infinite graph which is locally finite and connected admits a
translation-like action by Z.. Moreover, the action can be taken with d(v,v x 1) < 3 for
every vertex v.

These statements about translation-like actions can also be stated in terms of powers
of graphs. Given a graph I', its nth power I'” is defined as the graph with the same set
of vertices, and where two vertices u, v are joined if their distance in I" is at most 7. It is
well known that the cube of every finite and connected graph is Hamiltonian [11,30,37].
Our Theorem 1.3 generalizes this to infinite and locally finite graphs. That is, it shows that
the cube of a locally finite and connected graph with one or two ends admits a bi-infinite
Hamiltonian path.

We mention that Theorem 1.5 has been proved in [13, Section 4], using the same fact
about cubes of finite graphs.

1.2. Computability of translation-like actions

Now we turn our attention to the problem of computing translation-like actions on groups
or graphs. We recall that a graph is computable if there exists an algorithm which given
two vertices, determines whether they are adjacent or not. If, moreover, the graph is locally
finite, and the function that maps a vertex to its degree is computable, then the graph is said
to be highly computable. This extra condition is necessary to compute the neighborhood
of a vertex.

An important example comes from group theory: If G is a finitely generated group
with decidable word problem and S is a finite set of generators, then its Cayley graph
with respect to S is highly computable.

There is a variety of problems in graph theory that have no computable solution for
infinite graphs. A classical example is the problem of computing infinite paths. K&nig’s
infinity lemma asserts that every infinite, connected, and locally finite graph admits an infi-
nite path. However, there are highly computable graphs which admit paths, all of which
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are uncomputable [29]. Another example comes from Hall’s matching theorem. There
are highly computable graphs satisfying the hypotheses in the theorem, but which admit
no computable right perfect matching [33]. These two results are used in the proof of
Seward’s theorem, so the translation-like actions from this proof are not clearly com-
putable. We say that a translation-like action by Z on a graph is computable when there is
an algorithm which given a vertex v and n € Z computes the vertex v * 7.

Our interest in the computability of translation-like actions comes from symbolic
dynamics, and the shift spaces associated with a group. We will need a computable
translation-like action such that it is possible to distinguish in a computable manner
between different orbits. We introduce here a general definition, though we will only treat
the case where the acting group is Z.

Definition 1.6. Let G be a group, and let S C G be a finite set of generators. A
group action of H on G is said to have decidable orbit membership problem if there
exists an algorithm which given two words u and v in (S U S™1)* decides whether the
corresponding group elements u g, vg lie in the same orbit under the action.

Note that if H is a subgroup of G, then the action H ~, G by right translations has
decidable orbit membership problem if and only if H has decidable subgroup membership
problem (Proposition 4.9). Thus, this property can be regarded as the geometric reformula-
tion, in the sense of Whyte [41], of the subgroup property of having decidable membership
problem. The orbit membership problem has been studied for some actions by conjugacy
and by group automorphisms (see [6, 8,40] and references therein).

Our main result associated with computable translation-like actions on groups is the
following.

Theorem 1.7. Let G be a finitely generated infinite group with decidable word problem.
Then G admits a translation-like action by 7. that is computable and has decidable orbit
membership problem.

The proof of Theorem 1.7 proceeds as follows. For groups with one or two ends, we
will show the existence of a computable and transitive translation-like action by Z, that is,
a computable version of Theorem 1.3. This action has decidable orbit membership prob-
lem for the trivial reason that it has only one orbit. For groups with at least two ends we
obtain the action from a subgroup. It follows from Stalling’s structure theorem on ends of
groups that a finitely generated groups with two or more ends have a subgroup isomorphic
to Z. We will show that, if the group has solvable word problem, then this subgroup has
decidable membership problem. This proof is based on the computability of normal forms
associated with Stalling’s structure theorem (Proposition 4.7).

1.3. Medvedev degrees of effective subshifts

We now turn our attention to Medvedev degrees, a complexity measure which is defined
using computable functions. Precise definitions of this and the following concepts are
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given in Section 5. Intuitively, the Medvedev degree of a set P C AN measures how hard
is to compute a point in P. For example, a set has zero Medvedev degree if and only if it
has a computable point. This complexity measure becomes meaningful when we regard P
as the set of solutions to a problem. This notion can be applied to a variety of objects, such
as graph colorings [36], paths on graphs, matchings from Hall’s matching theorem, and
others [1, Chapter 13]. In this article, we consider Medvedev degrees of subshifts.

Let G be a finitely generated group, and let A be a finite alphabet. A subshift is a
subset of A9 which is closed in the prodiscrete topology and is invariant under transla-
tions. Dynamical properties of subshifts have been related to their computational proper-
ties in different ways. A remarkable example is the characterization of the entropies of
two-dimensional subshifts of finite type as the class of nonnegative I19 real numbers [25].

Here, we address the problem of classifying what Medvedev degrees can be attained
for a certain class of subshifts. For instance, this classification is known for subshifts
of finite type in the groups Z<, d > 1. In the case d = 1, all subshifts of finite type
have Medvedev degree zero, because all of them contain a periodic point, and then a
computable point. In the case d > 2, subshifts of finite type can attain the class of 19
Medvedev degrees [39].

A larger class of subshifts is that of effective subshifts. A subshift over Z is effective if
the set of words which do not appear in its configurations is computably enumerable. This
notion can be extended to a finitely generated group, despite some intricacies that arise in
relation to the word problem of the group. We will only deal with groups with decidable
word problem, and the notion of effective subshift is a straightforward generalization.

Answering a question left open in [39], Joseph Miller proved that effective subshifts
over Z can attain all H(l’ Medvedev degrees [34]. We generalize this result to the class of
infinite, finitely generated groups with decidable word problem.

Theorem 1.8. Let G be a finitely generated and infinite group with decidable word prob-
lem. The class of Medvedev degrees of effective subshift on G is the class of all H(l)
Medvedev degrees.

The idea for the proof is the following. Given any subshift ¥ C A%, we can construct a
new subshift X C B¢ that simultaneously describes translation-like actions Z ~, G, and
elements in Y. Then Theorem 1.7 ensures that this construction preserves the Medvedev
degree of Y, and the result follows from the known classification for Z [34].

Despite the simplicity of the proof, we need to translate some computability notions
from AN to AC; this is done by taking a computable numbering of G. The notions
obtained do not depend on the numbering and are compatible with notions already present
in the literature that were defined by other means [2].

This construction using translation-like actions was introduced in [28] and has been
used to prove different results in the context of symbolic dynamics. For example, to trans-
fer results about the emptiness problem for subshifts of finite type from one group to
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another [28], to produce aperiodic subshifts of finite type on new groups [13,28], and to
study the entropy of subshifts of finite type on some amenable groups [3].

Paper structure

In Section 2, we fix some notation and recall some basic facts on graph theory, group
theory, and computability theory on countable sets. In Section 3, we show Theorems 1.3
and 1.5 about translation-like actions. In Section 4, we show some results about com-
putable translation-like actions, including Theorem 1.7. This result is applied in Section 5
to prove Theorem 1.8 on Medvedev degrees.

2. Preliminaries
We denote by f o g the function that applies g to the argument, and then f.

2.1. Graph theory

In this article all graphs are undirected and unlabeled. Loops and multiple edges are
allowed. The vertex set of a graph I" will be denoted by V(I"), and its edge set by E(I").
Each edge joins a pair of vertices, and is said to be incident to them. Two vertices joined
by an edge are called adjacent. The degree deg-(v) of the vertex v is the number of inci-
dent edges to v, where loops are counted twice. A graph is said to be finite when its edge
set is finite, and locally finite when every vertex has finite degree.

In our constructions we will constantly consider induced subgraphs. Given a set of
vertices V' C V(I'), the induced subgraph T'[V] is the subgraph of I" whose vertex set
equals V, and whose edge set is that of all edges in E(I") whose incident vertices lie
in V. On the other hand, I' — V stands for the subgraph of I' obtained by removing
from I' all vertices in V, and all edges incident to vertices in V. That is, I' — V' equals
the induced subgraph I'[V(I") — V]. If A is a subgraph of I', we denote by I' — A the
subgraph I' — V(A).

A path on T is an injective function f:[a,b] — V(I") that sends consecutive integers
to adjacent vertices, where [a, b] C Z. We introduce now some useful terminology for
dealing with paths. We say that f joins f(a) to f(b) and define its length as b — a. We
say that f visits the vertices in its image, and we denote this set by V( f). We denote by
I' — f the subgraph I' — V(f). The vertices f(a) and f(b) are called the initial and final
vertices of f, respectively. When every pair of vertices in the graph I can be joined by a
path, then we say that I is connected. In this case we define the distance between two ver-
tices as the length of the shortest path joining them. This distance induces the path-length
metric on V(I"), which we denote by dr.

A connected component of I' is a connected subgraph of I' which is maximal for the
subgraph relation. The number of ends of T' is the supremum of the number of infinite
connected components of I' — V', where V ranges over all finite sets of vertices in I".
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2.2. Words and finitely generated groups

We now review some terminology and notation on words, alphabets, and finitely gener-
ated groups. An alphabet is a finite set. The set of finite words on alphabet A4 is denoted
by A*. The empty word is denoted by ¢. A word u of length n is a prefix of v when they
coincide in the first 7 symbols.

Now let G be a group. The identity element of G is denoted by 1g, or 1 if no confu-
sion arises. Let S C G be a finite set, and let S ™! be the set of formal inverses to elements
in S. Given a word w € (S U S™!)*, we denote by wg the group element obtained by
multiplying in G the elements from S that constitute the word. We also write u =g v
when the words u, v correspond to the same group element. A set S C G is said to gen-
erate G if every group element can be written as a word in (S U S™1)*, and G is finitely
generated when it admits a finite generating set. A finite generating set S C G induces
the left-invariant word metric on G, denoted by ds. The distance ds(g, /) is the length of
the shortest word w € (S U S™1)* such that g(w)g = h.

If S C G is a finite set of generators, we denote by Cay(G, S) the (undirected, and
right) Cayley graph of G relative to S. The vertex set of Cay(G, S) is G, and the edge
set of Cay(G, S) is {(g,g5) | g € G,s € S US~!). The edge (g, gs) joins the vertex g
with the vertex gs. Note that the distance that this graph assigns to a pair of elements
in G equals their distance in the word metric associated with the same generating set. The
number of ends of a finitely generated group is the number of ends of its Cayley graph, for
any generating set. This definition does not depend on the chosen generating set and can
only be among the numbers {0, 1, 2, oo} [19,27].

We now recall some algorithmic properties of groups and subgroups. The concept of
decidable set of words is defined in the next subsection. Let S C G be a finite set of gener-
ators, and let H be a subgroup of G. We say that H has decidable subgroup membership
problem if {w € (S U S™1)* | wg € H} is a decidable subset of (S U S~1)*. This notion
does not depend on the chosen generating set. In the particular case where H = {15}, the
set defined above is called the word problem of G. The property of having decidable word
problem is closely related to the property of being a computable group, which we discuss
in more detail in the next subsection.

2.3. Computability theory on countable sets via numberings

We start by reviewing some classical notions from recursion theory or computability the-
ory. All these facts are well known; the reader is referred to [12] for computability theory
and to [22, Chapter 14] for a survey on numberings.

We will use the word algorithm to refer to the formal object of Turing machine.
We will use other common synonyms such as “effective procedure.” A partial function
f:D CN — N is computable if there is an algorithm satisfying the following. On input n,
the algorithm halts if and only if n € D, and in this case outputs f(n). A subset D C N
is semi-decidable when there is an algorithm that halts on input # if and only if n € D. A
set D C N is decidable when both D and N — D are semi-decidable.
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All these notions extend directly to products N?, p > 1, and sets of words A*, as these
objects can be represented by natural numbers in a canonical way. In order to extend these
notions to other objects such as graphs and countable groups, we take a unified approach
via numberings.

Definition 2.1. A (bijective) numbering of a set X is a bijectivemapv: N — X, where N
is a decidable subset of N. We call (X, v) a numbered set. When v(n) = x, we say that n
is a name for x, or that n represents x.

A numbering of X defines computability notions in X in the same manner that charts
are used to define continuous or differentiable function on manifolds. For instance, a func-
tion f: X — X is computable on (X, v) when the “function in charts” v™' o f o v is
computable. There is a notion of equivalence for numberings: Two numberings v, v’ of X
are equivalent when the identity function (X, v) — (X, V') is computable. The Cartesian
product X x X’ of two numbered sets (X, v), (X', v’) admits a unique numbering—up
to equivalence—for which the projection functions to (X, v), (X', v’) are computable.
This provides definitions of computable functions and relations between different num-
bered sets, and we can freely speak about computable functions and relations between
numbered sets. We will be interested in the following objects.

Definition 2.2. A graph I" is computable if we can endow V(I') and E(I") with num-
berings, in such a manner that the relation of adjacency, and the relation {(e, u, v) |
e joins u and v} are decidable. We say that I" is also highly computable when it is locally
finite, and the vertex degree function V(I') — N, v — degp(v) is computable.

Definition 2.3. A numbering v of a group G is said to be computable when it makes the
group operation G2 — G is computable. In this case, the pair (G, v) is called a computable

group.

These notions provide a formal and precise meaning to general statements about the
computability of objects such as translation-like actions and bi-infinite paths on com-
putable groups or graphs. For instance, a group action on a computable group G is
computable when the function (g, n) — g * n from the numbered set G x Z to the
numbered set G is computable.

It is well known that algorithmic properties of finitely generated groups have a num-
ber of stability properties, such as being independent of the generating set. In terms of
numberings, this is expressed as follows.

Proposition 2.4. Let G be a finitely generated group. Then:
(1) G admits a computable numbering if and only if it has decidable word problem.

(2) If G admits a computable numbering, then all computable numberings of G are
equivalent.
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(3) If H is another finitely generated computable group, then any group homomor-
phism f:G — H is computable.

Proof sketch. Suppose that G has decidable word problem, let S C G be a finite generat-
ing set, and let 77: (S U S~!)* — G be the function that sends a word to the correspond-
ing group element. Using the decidability of the word problem, we can compute a set
N C (S US™1)* such that the restriction of 7 to N is a bijection. Being N a decidable
subset of (S U S™1)*, it admits a computable bijection with N. The composition of these
functions give a bijection v: N — G, and it is easy to verify that it is a computable num-
bering. The reverse implication is left to the reader. Items (2) and (3) are also left to the
reader: The relevant functions are determined by the finite information of letter-to-word
substitutions, and this allows to prove that they are computable. ]

We will also make use of the following well-known fact. The proof is straightforward,
and left to the reader.

Proposition 2.5. Let G be a finitely generated group with decidable word problem, and
let S be a finite generating set. Then Cay(G, S) is a highly computable graph.

3. Translation-like actions by Z on locally finite graphs

The goal of this section is to prove Theorems 1.3 and 1.5. That is, that every connected,
locally finite, and infinite graph admits a translation by Z, and that this action can be cho-
sen transitive exactly when the graph has one or two ends. The actions that we construct
satisfy that the distance between a vertex v and v * 1 is at most 3.

Our proof goes by constructing these actions locally, and in terms of 3-paths.

Definition 3.1. Let I" be a graph. A 3-path on I is an injective function f:[a,b] — V(T)
such that consecutive integers in [a, b] are mapped to vertices whose distance is at most 3.
A bi-infinite 3-path on T is an injective function f:7Z — V(I') satisfying the same condi-
tion on the vertices. A 3-path or bi-infinite 3-path is called Hamiltonian when it is also a
surjective function.

It is well known that every finite and connected graph admits a Hamiltonian 3-path,
where we can choose its initial and final vertex [11, 30, 37]. Here, we will need a slight
refinement of this fact.

Lemma 3.2. Let " be a graph that is connected and finite. For every pair of different ver-
tices u and v, T admits a Hamiltonian 3-path f which starts at u, ends at v, and moreover
satisfies the following two conditions:

(1) The first and last “jump” have length at most 2. That is, if f visits w immediately
after the initial vertex u, then dr (u, w) < 2. Moreover, if f visits w immediately
before the final vertex v, then dr(w,v) < 2.
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(2) There are no consecutive “jumps” of length 3. That is, if f visits wy, wy, and w3
consecutively, then dr(wy, wz) < 2 or dr(wa, w3) < 2.

Let us review some terminology on 3-paths before proving this result. When dealing
with 3-paths, we will use the same terms introduced for paths in the preliminaries, such
as initial vertex, final vertex, visited vertex, etc. Let f and g be 3-paths. We say that f
extends g if its restriction to the domain of g equals g. We will extend 3-paths by con-
catenation, which we define as follows. Suppose that final vertex of f is at distance at
most 3 from the initial vertex of g, and such that V( /) N V(g) = @. The concatenation of
f, g is the 3-path that extends f, and after the final vertex of f visits all vertices visited
by g in the same order. Finally, the inverse of the 3-path f, denoted by — £, is defined by
(=f)(n) = f(—n). Note that its domain is also determined by this expression.

Proof of Lemma 3.2. The proof is by induction of the cardinality of V(I"). The claim
clearly holds if |V(I")| = 2. Now assume that I" is a connected finite graph, and let u and v
be two different vertices. We consider the connected components of the graph I' — {v}
obtained by removing the vertex v from I'. Let I', be the finite connected component of
I' — {v} that contains u, and let I, be the subgraph of I" induced by the set of vertices
V() — V(y). Thus, u € Iy, v € Ty, and both I', and T", are connected. Let us first
assume that both I', and I', are graphs with at least two vertices. Then we can apply the
inductive hypothesis on each one of them. Let f,, be a Hamiltonian 3-path on T, as in the
statement, whose initial vertex is u, and whose final vertex is adjacent to v. Let f, be a
Hamiltonian 3-path on I';, as in the statement, whose initial vertex is adjacent to v, and
whose final vertex is v. Now if I';, only has the vertex u, then we define f;, as the 3-path
that only visits that vertex. We follow the same procedure if ', only has the vertex v.
Observe that in any case, the distance from the final vertex of f;, to the initial vertex of
fv is at most 2. We claim that the 3-path f obtained by concatenating f,,, f, verifies the
required conditions. It is clear that f is a Hamiltonian 3-path on I whose initial vertex
is u, and whose final vertex is v. Finally, that f satisfies the two numbered conditions in
the statement follows from the fact that distance from the final vertex of f, to the initial
vertex of f, is at most 2. L]

We will define bi-infinite 3-paths by extending finite ones iteratively. The following
definition will be key for this purpose.

Definition 3.3. Let f be a 3-path on a graph I". We say that f is bi-extensible if the
following conditions are satisfied:

(1) T — f has no finite connected component.
(2) Thereis a vertex u in I' — f at distance at most 3 from the final vertex of f.
(3) Thereisavertex v # uin I' — f at distance at most 3 from the initial vertex of f.

If only the first two conditions are satisfied, we say that f is right-extensible.
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We will now prove some elementary facts about the existence of 3-paths that
are bi-extensible and right-extensible. The proofs are elementary and are given by
completeness.

Lemma 3.4. Let I be a graph that is infinite, connected, and locally finite. Then for every
pair of vertices u and v in T, there is a right-extensible 3-path whose initial vertex is u,
and which visits v.

Proof. As T is connected, there is a path f joining u to v. Now define A as the graph
induced in I' by the set of vertices that are visited by f, or that lie in a finite connected
component of I' — f. Notice that as I" is locally finite, there are finitely many such con-
nected components, and thus A is a finite and connected graph. By construction, I' — A
has no finite connected component.

The desired 3-path will be obtained as a Hamiltonian 3-path on A. Indeed, as I" is con-
nected, there is a vertex w in A that is adjacent to some vertex in ' — A. By Lemma 3.2
there is a 3-path f’ which is Hamiltonian on A, starts at u, and ends in w. We claim that f’
is right-extensible. Indeed, our choice of A ensures that ' — f” has no finite connected
component, and our choice of w ensures that the final vertex of f’ is adjacent to a vertex
inl — f7. (]

Lemma 3.5. Let I be a graph that is infinite, connected, and locally finite. Then for every
vertex u in I, there is a bi-extensible 3-path in I that visits u.

Proof. Let v be a vertex in I that is adjacent to u, with v # u. Let A be the subgraph
of I" induced by the set of vertices that lie in a finite connected component of I" — {u, v},
or in {u, v}. As I' is locally finite, there are finitely many such connected components,
and thus A is a finite and connected subgraph of I'. By construction, I' — A has no finite
connected component.

The desired 3-path will be obtained as a Hamiltonian 3-path on A. Indeed, as T is
connected there are two vertices w € V(I' — A) and w’ € V(A), with w adjacent to w’
in I". As A has at least two vertices, we can invoke Lemma 3.2 to obtain a 3-path f that
is Hamiltonian on A, whose initial vertex is w’, and whose final vertex is adjacent to w’.
It is clear that then f is a bi-extensible 3-path in I. ]

Our main tool to construct bi-infinite 3-paths is the following result, which shows that
bi-extensible 3-paths can be extended to larger bi-extensible 3-paths.

Lemma 3.6. Let I be a graph that is infinite, connected, and locally finite. Let [ be a
bi-extensible 3-path on T, and let u and v be two different vertices in I' — f whose dis-
tance to the initial and final vertex of f is at most 3, respectively. Let w be a vertex in the
same connected component of I' — f that some of u or v. Then there is a 3-path f”' which
extends f, is bi-extensible on T, and visits w. Moreover, we can assume that the domain
of 1 extends that of f in both directions.
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Proof. If u and v lie in different connected components of I — f, then the claim is eas-
ily obtained by applying Lemma 3.4 on each of these components. Indeed, by Lemma 3.4
there are two right-extensible 3-paths g and 4 in the corresponding connected components
of I' — f, such that the initial vertex of g is u, the initial vertex of % is v, and some of
them visits w. Then the concatenation of —g, f, and / satisfies the desired conditions.

We now consider the case where u and v lie in the same connected component of
I' — f. This graph will be denoted A. Note that A is infinite because f is bi-extensible.
We claim that there are two right-extensible 3-paths on A, g and A, satisfying the fol-
lowing list of conditions: The initial vertex of g is u, the initial vertex of 4 is v, some of
them visits w, and V(g) N V(h) = @. In addition, (A — g) — & has no finite connected
component and has two different vertices u’ and v’ such that u’ is at distance at most 3
from the last vertex of g, and v’ is at distance at most 3 from the last vertex of /. Suppose
that we have g, h as before. Then we can define a 3-path f’ by concatenating —g, f, and
then h. It is clear that then f” satisfies the conditions in the statement.

We now construct g and s. We start by taking a connected finite subgraph Ag of A
which contains u, v, w and such that A — A has no finite connected component. The
graph Ay can be obtained, for instance, as follows. As A is connected, we can take a
path f, from u to w, and a path f;, from v to w. Then define Ay as the graph induced
by the vertices in V(fy), V(f,), and all vertices in the finite connected components of
(A= 1) = fu

Let p be a Hamiltonian 3-path on A¢ from u to v, as in Lemma 3.2. The desired 3-
paths f and g will be obtained by “splitting” p in two. As A is connected, there are two
vertices ug € V(Ayp), v/ € V(A — Ag) such that uy and v are adjacent in A. By the condi-
tions in Lemma 3.2, there is a vertex vg in V(A ) whose distance from u is at most 2, and
such that p visits consecutively {ug, vo}. We will assume that p visits vg after visiting ug,
the other case being symmetric. As A — Ag has no finite connected component, there is a
vertex u’ in A — A that is adjacent to v’. Thus, ug is at distance at most 2 from u’, and vg
is at distance at most 3 from v’. Now we define g and / by splitting p at the vertex ug.
More precisely, let [a, c] be the domain of p, and let b be such that p(b) = ug. Then / is
defined as the restriction of p to [a, b], and we define g by requiring —g to be the restric-
tion of p to [b + 1, c]. Thus, & is a 3-path from v to vg, and g is a 3-path from u to uy. By
our choice of Ag and p, the 3-paths 4 and g satisfy the mentioned list of conditions, and
thus the proof is finished. |

When the graph has one or two ends, the hypotheses of Lemma 3.6 on u, v, and w
are trivially satisfied. We obtain a very simple and convenient statement: We can extend a
bi-extensible 3-path so that it visits a vertex of our choice.

Corollary 3.7. Let I" be a graph that is infinite, connected, locally finite, and whose num-
ber of ends is either 1 or 2. Then for every bi-extensible 3-path [ and vertex w, there is a
bi-extensible 3-path on T that extends f and visits w. We can assume that the domain of
the new 3-path extends that of f in both directions.
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We are now in position to prove some results about bi-infinite 3-paths. We start with
the Hamiltonian case, which is obtained by iterating Corollary 3.7. When we deal with bi-
infinite 3-paths, we use the same notation and abbreviations introduced before for 3-paths,
as long as they are well defined.

Proposition 3.8. Ler I" be a graph that is infinite, connected, locally finite, and whose
number of ends is either 1 or 2. Then I admits a bi-infinite Hamiltonian 3-path.

Proof. Let (v,)nen be a numbering of the vertex set of I'. We define a sequence of bi-
extensible 3-paths ( f,)nen on I' recursively. We define fy as a bi-extensible 3-path which
visits vg. The existence of fy is guaranteed by Lemma 3.5. Now let n > 0 and assume that
we have defined a 3-path f;, that visits v,,. We define f, 11 as a bi-extensible 3-path on T’
which extends f,, visits v,1, and whose domain extends the domain of f; in both direc-
tions. The existence of such a 3-path is guaranteed by Corollary 3.7. We have obtained
a sequence ( f;)nen such that for all n, f, visits v,, and f,4+; extends f,. With this
sequence, we define a bi-infinite 3-path f:7Z — V(I') by setting f(k) = f,(k), for n
big enough. Note that f is well defined because f,4; extends f, as a function, and the
domains of f, exhaust Z. By construction, f visits every vertex exactly once, and thus it
is Hamiltonian. ]

We now proceed with the non-Hamiltonian case, where there are no restrictions on
ends. We first prove that we can take a bi-infinite 3-path whose deletion leaves no finite
connected component.

Lemma 3.9. Let I be a graph that is infinite, connected, and locally finite. Then for every
vertex v, there is a bi-infinite 3-path f that visits v, and such that T' — f has no finite
connected component.

Proof. By Lemmas 3.5 and 3.6, I admits a sequence ( f;)nen of bi-extensible 3-paths
such that fy visits v, f,+1 extends f, for all n > 0, and such that their domains exhaust Z.
We define a bi-infinite 3-path f:7Z — T by setting f(k) = f,(k), for n big enough. We
claim that f satisfies the condition in the statement, that is, that I' — f has no finite con-
nected component. We argue by contradiction. Suppose that 'y is a nonempty and finite
connected component of I' — . Define V; as the set of vertices in I" that are adjacent to
some vertex in [, but which are not in I'y. Then V; is nonempty as otherwise I" would not
be connected, and it is finite because I' is locally finite. Moreover, f visits all vertices in
V1, for otherwise 'y would not be a connected component of I' — f. As Vj is finite, there
is a natural number n; such that f;, has visited all vertices in V5. By our choice of V; and
ny, Iy is a nonempty and finite connected component of I" — f;,,, and this contradicts the
fact that f,, is bi-extensible. [

Now the proof of the following result is by iteration of Lemma 3.9.
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Proposition 3.10. Let " be a graph that is infinite, connected, and locally finite. Then
there is a collection of bi-infinite 3-paths f;:Z — U, i € I, such that V(I') is the disjoint
union of V(f;), i € I.

Proof. By Lemma 3.9, T’ admits a bi-infinite 3-path f; such that I' — f has no finite
connected component. Each connected component of I — f; is infinite and satisfies the
hypotheses of Lemma 3.9. Thus, we can apply Lemma 3.9 on each of these connected
components. Iterating this process in a tree-like manner, we obtain a family of 3-paths
fi:Z — T',i € I whose vertex sets V( f;) are disjoint. As Lemma 3.9 allows us to choose
a vertex to be visited by the bi-infinite 3-path, we can choose f; ensuring that every vertex
of T is visited by some f;. In this manner, V'(I") is the disjoint union of V( f;), ranging
iel. ]

Finally, we can obtain Theorems 1.3 and 1.5 from our statements in terms of bi-infinite
3-paths.

Proof of Theorem 1.3. Let I" be a graph as in the statement. By Proposition 3.8, I" admits
a Hamiltonian bi-infinite 3-path f. We define a translation-like %: V(I") x Z — V(I") by
the expression v * n = f(f~'(v) + n), n € Z. This translation-like action is transitive
because f is Hamiltonian and satisfies dr (v, v * 1) < 3 because f is a bi-infinite 3-path.

We now prove the remaining implication of the result. That is, that a connected and
locally finite graph which admits a transitive translation-like action by Z must have either
one or two ends. This is stated in [38, Theorem 3.3] for graphs with uniformly bounded
vertex degree, but the same proof can be applied to locally finite graphs. For completeness,
we provide an alternative argument. Let I' be a connected and locally finite graph which
admits a transitive translation-like action by Z, denoted *. As the action is free, V(I") must
be infinite, and thus I' has at least one end. Suppose now that it has at least three ends to
obtain a contradiction. Let J = max{dr(v,v x 1) | v € V(I')}. As I" has at least three
ends, there is a finite set of vertices V such that I" — V{ has at least three infinite con-
nected components, which we denote by I'y, ['», and I's. By enlarging V}, if necessary, we
can assume that any pair of vertices u and v that lie in different connected components in
I' — Vy, are at distance dr at least J + 1. Now as V) is finite, there are two integers n < m
such that Vj is contained in {v * k | n < k < m}. By our choice of Vj, it follows that the
set {v * k | kK > m + 1} is completely contained in one of 'y, I'5, or I'5. The same holds
for {v x k | k <n — 1}, and thus one of 'y, I'5, or I'3 must be empty, a contradiction. =

Proof of Theorem 1.5. Let T" be a graph as in the statement, and let f;, i € I as in
Proposition 3.10. We define x : V(I') x Z — V(I") by the expression

ven=f(fT')+n), nel,

where f is the only f; such that v is visited by f;. Observe that v * 1 is well defined
because V(I') = |_|;c; V(fi). This defines a translation-like action by Z, where the
distance from v to v % 1, v € V(I") is uniformly bounded by 3. |
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Remark 3.11. The proof given in this section is closely related to the characterization of
those infinite graphs that admit infinite Eulerian paths. This is a theorem of Erdés, Griin-
wald, and Weiszfeld [18]. In the recent work [9], the author of this article gave a different
proof of the Erdés, Griinwald, and Weiszfeld theorem that complements the original result
by also characterizing those finite paths that can be extended to infinite Eulerian ones.
This characterization is very similar to the notion of bi-extensible defined here. Indeed,
the proofs of Proposition 3.8 and the proof of the mentioned result about Eulerian paths
follow the same iterative construction.

Remark 3.12. As we mentioned before, it is known that the cube of every finite and
connected graph is Hamiltonian [11, 30, 37]. Proposition 3.8 can be considered as a gen-
eralization of this fact to locally finite graphs. That is, Proposition 3.8 shows that the cube
of every locally finite and connected graph with either one or two ends admits a bi-infinite
Hamiltonian path.

We end this section by rephrasing a problem left in [38, Problem 3.5].

Problem 3.13. Find necessary and sufficient conditions for a connected graph to admit a
transitive translation-like action by Z.

We have shown that for locally finite graphs, the answer to this problem is as simple
as possible, involving only the number of ends of the graph. The problem is now open for
graphs that are not locally finite. We observe that beyond locally finite graphs there are
different and nonequivalent notions of ends [15], and thus answering the problem above
also requires to determine which is the appropriate notion of ends.

4. Computable translation-like actions by Z

The goal of this section is to prove Theorem 1.7. Namely, that every finitely generated
infinite group with decidable word problem admits a translation-like action by Z, with the
additional property of being computable and with decidable orbit membership problem.
The proof of Theorem 1.7 is as follows. For groups with at most two ends, we prove
the existence of a computable and transitive translation-like action. That is, we prove a
computable version of Theorem 1.3. For groups with more than two ends, we prove the
existence of a subgroup isomorphic to Z and with decidable subgroup membership prob-
lem. Thus for groups with two ends, we provide two different proofs for Theorem 1.7.
A group with two ends is virtually Z, and it would be easy to give a direct proof, but the
intermediate statements may have independent interest (Theorem 4.1 and Proposition 4.7).

4.1. Computable and transitive translation-like actions by Z

The goal of this subsection is to prove that Theorem 1.3 is computable on highly
computable graphs.
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Theorem 4.1 (Computable Theorem 1.3). Let " be a graph that is highly computable,
connected, and has either one or two ends. Then T admits a computable and transitive
translation-like action by 7, where the distance between a vertex v and v * 1 is uniformly
bounded by 3.

We start by proving that the bi-extensible property (Definition 3.3) is algorithmically
decidable on highly computable graphs with one end.

Proposition 4.2. Let I" be a graph that is highly computable, connected, and has one end.
Then it is algorithmically decidable whether a 3-path f is bi-extensible.

Proof. Tt is clear that the second and third conditions in the definition of bi-extensible
are algorithmically decidable. For the first condition, note that as I' has one end, we can
equivalently check whether I' — f is connected. This is proved to be a decidable prob-
lem in [9, Lemma 5.6]. Note that the mentioned result concerns the remotion of edges
instead of vertices, but indeed this is stronger: Given f, we compute the set E of all edges
incident to a vertex in V( f), and then use [9, Lemma 5.6] with input E. |

For graphs with two ends we prove a similar result, but we need an extra assumption.

Proposition 4.3. Let I" be a graph that is highly computable, connected, and has two
ends. Let fo be a bi-extensible 3-path on T, such that T’ — fo has two infinite connected
components. Then there is an algorithm that on input a 3-path [ that extends fy decides
whether f is bi-extensible.

Proof. Tt is clear that the second and third conditions in the definition of bi-extensible
are algorithmically decidable. We address the first condition. We prove the existence of a
procedure that, given a 3-path f as in the statement, decides whether I' — f has no finite
connected component. Given f, we start by computing the set E. In [9, Lemma 5.5],
there is an effective procedure that halts if and only if I' — f* has some finite connected
component (the aforementioned result mentions the remotion of edges instead of vertices,
but indeed this is stronger: Given f, we compute the set E of all edges incident to a vertex
in V(f), and then use [9, Lemma 5.5] with input E).

Thus, we need an effective procedure that halts if and only if I' — f has no finite con-
nected component. As f extends fp, this is equivalent to ask whether I' — f has at most
two connected components. The procedure is as follows: Given f, we start by computing
the set Vy of vertices in I' — f that are adjacent to a vertex visited by f. Then for every
pair of vertices in u, v € Vj, we search exhaustively for a path that joins them, and that
never visits vertices in V( f). That is, a path in I' — f. Such a path will be found if and
only if the connected component of I' — f that contains u equals the one that contain v.
We stop the procedure once we have found enough paths to write Vy as the disjoint union
V1 U Va,, where every pair of vertices in V; (resp. V>) is joined by a path as described. m

We can now show an effective version of Proposition 3.8.
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Proposition 4.4 (Computable Proposition 3.8). Let I be a graph that is highly com-
putable, connected, and has either one or two ends. Then I' admits a computable
bi-infinite Hamiltonian 3-path.

Proof. Let (v;);en be a numbering of the vertex set of the highly computable graph I'.
Now let fj be a 3-path which is bi-extensible and visits vg. If " has two ends, then we also
require that I' — fy has two infinite connected components. In this case we do not claim
that the path fy can be computed from a description of the graph, but it exists and can
be specified with finite information. After fixing fy, we just follow the proof of Proposi-
tion 3.8 and observe that a sequence of 3-paths ( f;)»eN as in this proof can be uniformly
computed. That is, there is an algorithm which given n, computes f,. The algorithm pro-
ceeds recursively: Assuming that (f;); <, have been computed, we can compute f,+; by
an exhaustive search. The search is guaranteed to stop, and the conditions that we impose
on f,4 are decidable thanks to Propositions 4.2 and 4.3. Finally, let f:Z — V(T") be the
Hamiltonian 3-path on I" defined by f(k) = f,(k), for n big enough. Then it is clear that
the computability of ( f,),en implies that f is computable. L]

Now, we are ready to prove Theorem 4.1.

Proof of Theorem 4.1. Let I" be as in the statement. By Proposition 4.4, I" admits a bi-
infinite Hamiltonian 3-path f:Z — V(I") that is computable. Then it is clear that the
translation-like action *: V(I") x Z — V(I") defined by v x n = f(f~'(v) +n), n € Z,
is computable. ]

This readily implies Theorem 1.7 for groups with one or two ends.

Proof of Theorem 1.7 for groups with one or two ends. Let G be a finitely generated infi-
nite group with one or two ends, and with decidable word problem. Let S C G be a
finite set of generators, and let I' = Cay(G, S) be the associated Cayley graph. As G has
decidable word problem, this is a highly computable graph (Proposition 2.5). Then by
Theorem 4.1, I admits a computable and transitive translation-like action by Z. As the
vertex set of I" is G, this is also a computable and transitive translation-like action on G.
This action has decidable orbit membership problem for the trivial reason that it has only
one orbit. ]

Remark 4.5. As mentioned in the introduction, there are a number of results in the theory
of infinite graphs that cannot have an effective counterpart for highly computable graphs.
In contrast, we have the following consequences of Theorems 1.3 and 4.1:

(1) A highly computable graph admits a transitive translation-like action by Z if and
only if it admits a computable one.

(2) A group with decidable word problem has a Cayley graph with a bi-infinite Hamil-
tonian path if and only if it has a Cayley graph with a computable bi-infinite
Hamiltonian path.
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(3) The cube of a highly computable graph admits a bi-infinite Hamiltonian path if
and only if it admits a computable one.

The third item should be compared with the following result of Bean: There is a graph
that is highly computable and admits infinite Hamiltonian paths, but only uncomputable
ones [5]. Thus, the third item shows that for graphs that are cubes, it is algorithmically
easier to compute infinite Hamiltonian paths.

It follows from our results that the problem of deciding whether a graph admits a
bi-infinite Hamiltonian path is also algorithmically easier when we restrict ourselves to
graphs that are cubes. Harel proved that the problem of Hamiltonicity is analytic-complete
for highly computable graphs [23, Theorem 2]. On the other hand, it follows from Theo-
rem 1.3 that for graphs that are cubes, it suffices to check that the graph is connected and
has either one or two ends. These conditions are undecidable, but are easily seen to be
arithmetical [31]. In view of these results, it is natural to ask if these problems are easier
when we restrict ourselves to graphs that are squares.

Question 4.6. The problem of computing infinite Hamiltonian paths (resp. deciding
whether an infinite graph is Hamiltonian) on highly computable graphs, is easier when
we restrict to graphs that are squares?

4.2. Computable normal forms and Stalling’s theorem

In this subsection we prove Theorem 1.7 for groups with two or more ends. It follows
from Stalling’s structure theorem on ends of groups that a group with two or more ends
has a subgroup isomorphic to Z. We will prove that, if the group has solvable word prob-
lem, then this subgroup has decidable membership problem. This will be obtained from
normal forms associated with HNN extensions and amalgamated products. We now recall
well-known facts about these constructions; the reader is referred to [32, Chapter IV].

HNN extensions are defined from a group H = (Sy | Ry ), a symbol ¢ not in Sy,
and an isomorphism ¢: A — B between subgroups of H. The HNN extension relative
to H and ¢ is the group with presentation H*g = (Sg,t | Ry, tat™' = ¢(a), Ya € A).
Now let T4 C H and Tp C H be sets of representatives for equivalence classes of H
modulo A4 and B, respectively. The group H %4 admits a normal form associated with the
sets T4 and Tp. The sequence of group elements hg, %', hy,...,t%" hy,, & € {1,—1},is
in normal form if (1) hg € H, (2) if & = —1, then h; € T4, (3) if &; = 1, then h; € Tp,
and (4) there is no subsequence of the form 7%, 1z,77°. For every g € H *¢, there exists
a unique sequence in normal form whose product equals g in H *4.

Amalgamated products are defined from two groups H = (Sg | Rg) and K = (Sk |
Rk), and a group isomorphism ¢: A — B, with A < H and B < K. The amalgamated
product of H and K relative to ¢ is the group with presentation H *¢ K = (Sg, Sk |
Ry, Rk, a = ¢(a), Va € A). Now let T4 C H be a set of representatives for H mod-
ulo 4, and let T C K be a set of representatives for K modulo B. The group H x4 K
admits a normal form associated with the sets T4 and 7. A sequence of group elements
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€0,Cl,--.,Cn 18 in normal form if (1) co liesin A or B, (2) ¢; isin T4 or T fori > 1,
(3) ¢; # 1fori > 1, and (4) successive c; alternate between T4 and Tg. For each element
g € H x4 K, there exists a unique sequence in normal form whose product equals g in
H *¢ K.

Stalling’s structure theorem relates ends of groups with HNN extensions and amalga-
mated products [17]. This result asserts that every finitely generated group G with two
or more ends is either isomorphic to an HNN extension H *4, or isomorphic to an amal-
gamated product H *4 K. In both cases, the corresponding isomorphism ¢ is between
finite and proper subgroups, and the groups H, or H and K, are finitely generated (see
[14, pp. 34 and 43]). We will now prove that when G has decidable word problem, then
the associated normal forms are computable. This means that there is an algorithm which
given a word representing a group element g computes a sequence of words such that the
corresponding sequence of group elements is a normal form for g. The proof is direct, but
we were unable to find this statement in the literature.

Proposition 4.7. Let G be a finitely generated group with two or more ends and decid-
able word problem. Then the normal form associated with the decomposition of G as HNN
extension or amalgamated product is computable.

Proof. Let us assume first that we are in the first case, so there is a finitely generated group
H = (Sy | Ry), and an isomorphism ¢: A — B between finite subgroups of H, such
that G is isomorphic to the HNN extension H*y = (Sg,t | Ry, tat™ = ¢(a), a € A).
A preliminary observation is that H has decidable word problem. Indeed, this prop-
erty is inherited by finitely generated subgroups, and G has decidable word problem by
hypothesis. The computability of the normal form will follow from two simple facts:

First, observe that the finite group A = {a;, ..., a,} has decidable membership prob-
lem in H. Indeed, given a word w € (Sg U Si')*, we can decide if wy € A by checking
if w=pg a; fori = 1,...,m. This is an effective procedure as the word problem of H is
decidable and is guaranteed to stop as A is a finite set. As a consequence of this, we can
also decide if ug € Avy for any pair of words u,v € (Sy U S I;l)*, as this is equivalent
to decide if (uv~!)g lies in A. The same is true for B.

Second, there is a computably enumerable set Wy C (Sg U SITII)* such that the cor-
responding set T4 of group elements in H constitute a collection of representatives for H
modulo A. We sketch an algorithm that computably enumerates Wy as a computable
sequence of words. Set uy to be the empty word. Now assume that words uy, ..., Uy
have been selected, and search for a word u,4+1 € (Sg U Sg,l)* such that (1, +1)g does
not lie in A(ug)g, ..., A(u,)g. The condition that we impose to u, 4+ is decidable by
the observation in the previous paragraph, and thus an exhaustive search is guaranteed to
find a word as required. It is clear that the set W4 that we obtain is computably enumer-
able, and that the set T4 of the group elements of H corresponding to these words is a
set of representatives for H modulo A. A set Wp corresponding to 7 can be enumerated
analogously.
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Finally, we note that we can computably enumerate sequences of words wo, ..., Wy,
that represent normal forms (with respect to T4 and Tg) for all group elements. Indeed,
using the fact W4 and Wp are computably enumerable sets, we just have to enumerate
sequences of words wy, . . ., wy, such that wy as an arbitrary element of (Sg U S;II)*, and
the rest are words from Wy, Wg, or {t, t_l} that alternate as in the definition of normal
form. In order to compute the normal form of a group element wg given by a word w, we
just enumerate these sequences wy, . . ., w, until we find one satisfying w =g wy - - wy,
this is a decidable question as G has decidable word problem. We have proved the com-
putability of normal forms as in the statement, in the case where G is a (isomorphic to)
HNN extension.

If G is not isomorphic to an HNN extension, then it must be isomorphic to an amal-
gamated product. Then there are two finitely generated groups H = (Sy | Ry) and
K = (Sk | Rk), and a group isomorphism ¢: A — B, with A < H and B < K finite
groups, such that G is isomorphic to (Sg, Sk | Ry, Rk, a = ¢(a), Ya € A). Now
the argument is the same as the one given for HNN extensions. That is, A and B have
decidable membership problem because they are finite, and there are two computably
enumerable sets of words Wy and Wp corresponding to sets T4 and T as in the definition
of normal form for amalgamated products. This, plus the decidability of the word prob-
lem, is sufficient to compute the normal form of a group element given as a word, by an
exhaustive search. ]

We obtain the following result from the computability of these normal forms.

Proposition 4.8. Let G be a finitely generated group with two or more ends and decid-
able word problem. Then it has a subgroup isomorphic to Z with decidable subgroup
membership problem.

Proof. By Stalling’s structure theorem, either G is isomorphic to an HNN extensions,
or G is isomorphic to an amalgamated product. We first suppose that G is isomorphic to an
HNN extension H*g = (Sg,¢ | Ry, tat™' = ¢(a), a € A). Without loss of generality, we
will assume that G is equal to this group instead of isomorphic, as the decidability of the
membership problem of an infinite cyclic subgroup is preserved by group isomorphisms.
We claim that the subgroup of G generated by ¢ has decidable membership problem.
Indeed, a group element g lies in this subgroup if and only if the normal form of g or g~ !
is1,¢,1,...,¢, 1. By Proposition 4.7, this normal form is computable, and thus we obtain
a procedure to decide membership in the subgroup of G generated by .

We now consider the case where G is isomorphic to an amalgamated product. Then
there are two finitely generated groups H = (Sy | Ry) and K = (Sk | Rk), and a group
isomorphism ¢ : A — B, with A < H and B < K finite groups, such that G is isomor-
phic to (Sg, Sk | Ra, Rk, a = ¢(a), Ya € A). As before, we will assume without loss
of generality that G is indeed equal to this group. Now let T4 and Tp be the sets defined
in Proposition 4.7 that are associated with the computable normal form, and let u € Ty,
v € Tp be both nontrivial elements. We claim that the subgroup of G generated by uv
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is isomorphic to Z and has decidable membership problem. Indeed, a group element g
lies in this subgroup if and only if the normal form of g or g~! is u,v,...,u,v. By
Proposition 4.7, this normal form is computable, and thus we obtain a procedure to decide
membership in the subgroup of G generated by ¢. ]

We now verify the fact that for translation-like actions coming from subgroups, the
properties of decidable orbit membership problem and decidable subgroup membership
problem are equivalent.

Proposition 4.9. Let H < G be finitely generated groups. Then H has decidable member-
ship problem in G if and only if the action of H on G by right translations has decidable
orbit membership problem.

Proof. Let x be the action defined by G x H — G, (g, h) — gh. The claim follows from
the fact that two elements g1, g» € G lie in the same * orbit if and only if g;g,™! € H,
and an element g € G lies in H if and only if it lies in the same * orbit as 1.

It is clear how to rewrite this in terms of words, but we fill the details for completeness.
For the forward implication, let u,v € (S U S _1)* be two words, for which we want to
decide whether u g, v lie in the same orbit. We start by computing the formal inverse of v,
denoted v™!, and then check whether the word uv~! liesin {w € (SU S™1)* | wg € H}.
This set is decidable for hypothesis. For the reverse implication, assume that the action
has decidable orbit membership problem. The set {w € (S U S™1)* | wg € H} equals the
set of words w € (§ U S™1)* such that wg and 1¢ lie in the same orbit, which is a decid-
able set by hypothesis. It follows that H has decidable subgroup membership problem
in G. ]

We can now finish the proof of Theorem 1.7.

Proof of Theorem 1.7 for groups with two or more ends. Let G be a finitely generated
infinite group with decidable word problem and at least two ends. By Proposition 4.8,
there is an element ¢ € G such that (c¢) is isomorphic to Z and has decidable subgroup
membership problem in G. The right action Z ~, G defined by g % n = gc” has decidable
orbit membership problem by Proposition 4.9.

It only remains to verify that the function G x Z — G, (g, n) + g * n is computable
in the sense of Subsection 2.3. This is clear, but we write the details for completeness.
The group operation f1: G x G — G is computable by Proposition 2.4. Moreover, it is
clear that the function f>:7Z — G, n + ¢" is computable. Then it follows that the func-
tion f3:G xZ — G, (g, n) — fi(g, f2(n)) is computable, being the composition of
computable functions. But f3(g,n) = g * n, and thus * is a computable group action. m
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5. Medvedev degrees of effective subshifts

The goal of this section is to prove Theorem 1.8. That is, that on every infinite group with
decidable word problem, the class of possible Medvedev degrees of effective subshifts is
that of TT9 degrees.

In summary, our proof is the application of a known construction that given a sub-
shift X C AZ, outputs a subshift ¥ C A% whose configurations describe simultaneously
translation-like actions Z ~, G, and configurations in X. When we require this construc-
tion to preserve the Medvedev degree of the initial subshift X, then the existence of
a computable translation-like action Z ~, G with decidable orbit membership problem
arises as a natural condition.

Medvedev degrees of subshifts have only been discussed in the literature for G = Z¢,
and for this reason we will review computability aspects of the space A% in detail. Given
a group G with decidable word problem, we will translate computability notions from AN
to AS using a computable numbering v: N — G. We verify that the computability notions
in this space are independent of the chosen numbering, preserved by group isomorphisms,
compatible with previous notions in the literature [2], and that an effective subshift is the
same as a subshift that is effectively closed as a set. This equivalence is lost for groups
whose word problem is algorithmically complex (see [2,4]).

5.1. Computability notions on the Cantor space

Here, we will review some standard concepts from the theory of computability on the
Cantor space. A modern reference of computability theory on uncountable spaces is [7].

Let A be a finite alphabet. The set AN is endowed with the prodiscrete topology,
for which a sub-basis is the set of cylinders. A cylinder is a set of the form [p] =
{x € AN | x|x = p), where p is a pattern: a function from a finite set K C N to A.
We identify a word w = wq --- w, € A* with the pattern {0, ...,n} — A, and thus
[w] = {x € AN | xo---Xn = wo -~ wn}.

Definition 5.1. Aset X C AN is effectively closed, denoted 19, if some of the following
equivalent conditions hold:

(1) The complement of X can be written as |_J,,¢; [w], for a computably enumerable
set of words L C A*.

(2) It is semi-decidable whether a word w satisfies [w] N X = @.
(3) Itis semi-decidable whether a pattern p satisfies [p] N X = @.

Definition 5.2. A partial function F: D € AN — BN is computable when there is a partial
computable function on words f: A* — B* satisfying the following three conditions:

(1) f is monotone for the prefix order on words.

(2) For each x in the domain D, the length of f(x|o,... x}) tends to infinity with k.

.....
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(3) For every x in the domain D, and for every k € N, there is n big enough such that
F(x)(n) is the nth letter in the word f(x|qo,... k})-

It follows from the definition that a computable function must be continuous.

Example 5.3. The shift function o: AN — AN, (ox)(n) = x(n + 1) is computable. This
is shown by the computable function s: A* — A*, s(wowy + -+ Wy) = Wy ++- Wy.

Definition 5.4. Let X C AN and Y C BYN. The sets X and Y are computably homeo-
morphic if there is a homeomorphism ®: X — Y such that both ® and its inverse are
computable functions.

Example 5.5. Let f:N — N be a computable bijection, and let F: AN — AN be defined
by x = x o f. Then F is a computable homeomorphism, and with computable inverse
X xo f7L

Example 5.6. If A and B are finite alphabets with cardinality at least 2, then the sets
AN and BYN are computably homeomorphic. Indeed, the usual homeomorphism between
these sets is a computable function (see [26, Theorem 2-97]). A simple case is when
A =1{0,1,2,3} and B = {0, 1}. Then a computable homeomorphism is given by the
letter-to-word substitutions O — 00, 1 — 01, 2 —~ 10, 3 —~ 11.

5.2. Medvedev degrees

Here, we review the lattice It of Medvedev degrees. A survey on this topic is [24].

Definition 5.7. Let X € AN and Y c BN. We say that Y is Medvedev reducible to X,
written Y <gp X, if there is a partial computable function ® defined on all elements of X,
and such that ®(X) C Y. We write X =gy ¥ when we have both reductions. A Medvedev
degrees is an equivalence class of =gy, and we denote by It the set of Medvedev degrees.
The pre-order <gy becomes a partial order on I, and the degree of a set X is denoted by

deggp (X).

The partially ordered set (I, <gp) is indeed a distributive lattice with a bottom ele-
ment Ogy, and a top element 1gy. We remark that the Medvedev degree of a set X is mean-
ingful when we regard X as the set of all solutions to a problem: It measures how hard is
it to find a solution, where hard means hard to compute. For instance, deggp (X) = Ogy if
and only if X has a computable point, while deggy, (X ) = lgy if and only if X is empty. A
prominent sublattice of 9t is that of T19 degrees.

Definition 5.8. A Medvedev degree is called IT9 when it is the degree of a 19 nonempty
subset of {0, 1}V,
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5.3. Subshifts

Here, we review standard terminology for subshifts. The reader is referred to the
book [10].

Let G be a finitely generated group, and let A be a finite alphabet. We endow A%
with the prodiscrete topology. A subshift is a subset X C A® which is closed and
invariant under the group action G ~, A® by left translations (gx)(h) — x(g~'h). A
pattern is a function p from a finite set K C G to A, and it determines the cylinder
[p] = {x € A9 | x|g = p}. If gx € [p] for some g € G, we say that p appears on x.
A set of forbidden patterns F defines the subshift X of all elements x € A% where no
pattern of ¥ appears in x. Every subshift is determined by a maximal set of forbidden
patterns, but it can have more than one defining set of forbidden patterns. A subshift is of
finite type (SFT) if it can be defined with a finite set of forbidden patterns.

5.4. Computability on A€

In this subsection we translate computability notions from AN to A%, where G is a finitely
generated group with decidable word problem. Our goal is to provide a definition of
Medvedev degree for subshifts. In simple words, we will take a computable bijection
v:N — G, and use it to define a homeomorphism from AN to A9. We declare this home-
omorphism to be computable, and in this manner we translate to A the concepts defined
in AN, This process is well established in the theory of computability on uncountable
spaces and is the subject of representation theory. A representation plays the same role as
a numbering (Subsection 2.3), but for an uncountable set.

We recall now some definitions from [7, Chapter 9]. A represented space is a pair
(X, 8) where X is a set and § is a representation of X: a partial surjection §: dom(§) C
AN — X. In a represented space (X, §), a subset Y C X is effectively closed when
§71(Y) c AN is an effectively closed set. Moreover, if (X, 8": AN — X’) is another
represented space, a function F: X — X' is computable when §' 1 o F 0 §: AN — A'N is
a computable function. Finally, two representations of the same space X, §: AN — X and
§': AN — X, are equivalent if the identity function from (X, §) to (X, §’) is computable.
Note that in this case, both representations induce the same computability notions on X .

In what follows we will focus on a specific representation of A%, which is also a total
function and a homeomorphism.

Definition 5.9. Let G be a finitely generated group with decidable word problem, and
let v a computable numbering of G. We define the representation § by

§: AN — AC
x> xov L
It follows from Proposition 2.4 that a group as in the statement admits a computable

numbering, and that all these numberings are equivalent. In terms of representations, this
is expressed as follows.
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Proposition 5.10. In Definition 5.9, any two computable numberings induce equivalent
representations.

Proof. Let v’ be another computable numbering of G, and let §’ be the associated repre-
sentation of A%. Let F: A9 — A be the identity function. Then §'~' o F 0 §: AN — AN
is given by x > x o v~ o V. We verify that this function is a computable homeomor-
phism. Indeed, as the numberings v, v’ are equivalent (Proposition 2.4), the function
v 01: N — N is a computable bijection of N, and this implies that x > x o v™1 01’
is a computable homeomorphism (see Example 5.5). ]

We note that computability notions on A© are also preserved by group isomorphisms.

Proposition 5.11. Let G and G’ be finitely generated groups with decidable word prob-
lem, and let AS, AS" be endowed with the representation in Definition 5.9. If G — G’
is a group isomorphism, then the associated function F: AS > ACG x> xo fisa
computable homeomorphism.

The proof is similar to the proof of Proposition 5.10, but applying the third item in
Proposition 2.4. This means that the computability notions on AY are preserved if we
rename group elements (e.g., by taking different presentations of the same group). We are
ready to define the Medvedev degree of a subset of AC.

Definition 5.12. Let G be a finitely generated group with decidable word problem. Given
asubset X C A%, we define deggy (X) = deggn (571 X).

This definition does not depend on §, as long as § comes from a computable numbering
of G. We now turn our attention to effectively closed subsets of A%, and subshifts.

Proposition 5.13. Let G be a finitely generated group with decidable word problem. Then
a subset X C AC is effectively closed if and only if it is semi-decidable whether a pattern
p: K C G — A satisfies [p] N X = 0.

Proof. We only prove the forward implication, the converse being similar. Given a pat-
tern p: K € G — A, we start by computing a pattern p’: K’ C N — A such that
p = p ov.Then[p] N X = @if and only if [p'] N §~1(X) = @. But the latter relation is
semi-decidable on p’ as §1(X) is effectively closed in AN. |

In [2], the authors introduced a notion of effectiveness for subshift on general finitely
generated groups. This notion is not explicitly associated with A® as a represented space
(or a computable metric space), but we shall verify now that for groups with decidable
word problem, these approaches are equivalent.

The following definitions are taken from [2]. A pattern coding c is a finite set of tuples
{(wi,a1),..., (wg,ar)}, where w; € S* and a; € A, and is consistent when w; =g wj
implies a; = a;. A consistent pattern coding defines a pattern p(c): K C G — A, where K



26 N. Carrasco-Vargas

equals {(w1)g, ..., (Wk)g}, and p((w;)g) = a;. A set of pattern codings € defines the
subshift Xe of all elements x € AC such that no pattern of the form p(c) appears in x,
where ¢ ranges over €. A subshift X is effective if there is a computably enumerable set
of pattern codings € such that X = Xe.

Proposition 5.14. Let G be a finitely generated group with decidable word problem. Then
a subshift X C AS is effective if and only if it is an effectively closed subset of AC.

Proof. If a subshift is an effectively closed subset of A%, then by Proposition 5.13 the
set of all patterns p with [p] N X = @ is computably enumerable. Let ¥ be this set of
patterns, and let € be the set of all pattern codings associated with patterns in % . It is
clear that € is computably enumerable and X = Xe, so X is an effective subshift as well.

‘We now consider the other direction. In [2, Lemma 2.3], it is shown that for a recur-
sively presented group and in particular one with decidable word problem, an effective
subshift has a maximal—for inclusion—computably enumerable set of pattern codings
associated with forbidden patterns. Given an effective subshift X, we can write X = Xe,
where € is a maximal—for inclusion—set of defining forbidden pattern codings. As G
has decidable word problem, the set of consistent pattern codings is decidable, and thus we
can computably discard those pattern codings that are not consistent. This, plus the previ-
ous fact, proves that the set of all patterns p with [p] N X = @ is computably enumerable.
By Proposition 5.13, it follows that the set X is effectively closed. ]

Let us now make some comments about the computability of the action G ~, AS
by translations. It follows from Proposition 2.4 and Example 5.5 that this action is
computable.

Proposition 5.15. Let G be a finitely generated group with decidable word problem. Then
the group action G ~, AC is computable.

It follows from Proposition 2.4 that all numberings of a group G as above that make
the left (resp. right) action G ~, G, (g, h) — gh computable are equivalent. In other words,
the action of a group on itself characterizes those computable numberings of the group.
This is a well-studied subject and leads to the notion of computable dimension of a group
(see, for instance, [21]). It is natural then to ask whether something analogous happens for
representations of the space A%.

Question 5.16. Let G be a finitely generated group with decidable word problem. Are all
representations of the space A® that make the action G ~, A% computable equivalent?

5.5. The subshift of translation-like actions by Z, and the proof of Theorem 1.8

In this subsection, we finally prove Theorem 1.8. Our standing assumption is that G is a
finitely generated group, S C G is a finite set of generators, and J € N. When we need G
to have decidable word problem, we will specify it.
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Definition 5.17. We define T7(Z, G) as the set of all translation-like actions *: G x
Z — G, such that {ds(g,g * 1) | g € G} is bounded by J.

Consider now the finite alphabet B = B(lg, J) X B(lg, J), where B(lg, J) is
the ball {g € G | ds(g, 1g) < J}. Every translation-like action * € T;(Z, G) defines
a configuration in B, denoted x4, by the condition

VgeG x«(g)=(Ur) < gx—l=glandg=x1=gr
Definition 5.18. We define X;(Z, G) as the set {x. € B® | x € T;(Z,G)}.

The informal idea is to interpret x(g) = (I, r) as a pair of arrows: g has an outgoing
arrow to gr, and an incoming arrow from g/. See Figure 1.

Proposition 5.19. The set X j(Z, G) is a subshift. If G has decidable word problem, then
it is an effective subshift.

Proof. We define for each element x € BC a function * x: G X Z — G, which may not
be a group action. L and R stand for the projections B — B(1g, J) to the left and right
coordinates, respectively. For m € Z>¢ and g € G, define g *x m by setting g *x 0 = g,
g*x 1 =gR(x(g)),and g x5 (m + 1) = (g *x m) *x 1. Form € Z o, define g *x m by
g *x —1 = gL(x(g)) and g *x (m — 1) = (g *x m) *x —1.

If p: K C G — B is apattern and m € Z, we give to g *, m the same meaning as
before, as long as it is defined. Note that for arbitrary x € BS and n, m € Z, the relation
(g *x n) xxy m = g x5 (n + m) is not guaranteed to hold, but it does hold when n and m
have the same sign.

Let ¢ be the set of all patterns p: B(1g,n) — B, n € N, such that some of the
following conditions occur:
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Figure 1. Representation of some orbits of a translation-like action in T»(Z, Z?), or alternatively,
a finite pattern in a configuration in X>(Z, ZZ). In this case, 72 is endowed with the set of four
generators S = {(£1,0), (0, £1)}.
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(1) (I #p 1) #p =1 # 1g.

2) (1g *p —1) x5 1 # 1.

(3) Forsomem € Z — {0}, 1g *p, m = 1g.

We claim that X (Z,G) = X 4. The inclusion X j(Z, G) C Xg4 is straightforward. Indeed,
given x € T;(Z, G), it is clear that no pattern of § may appear on x by the definition of
group action and translation-like action.

We prove now that Xg C X;(Z, G). Let x € Xg4 be an arbitrary element. We first
prove that *, is a translation-like action in Ty (Z, G). Indeed, it follows from the forbid-
den patterns in J that forevery g € G, (g *x 1) *x, —1 = (g *, —1) %, 1 = g. Then an easy
induction on max{|n|, |m|} shows that (g *x 1) *x m = g *x (n + m) for all n,m € Z.
Thus x*, is a group action. This action is free by the third condition on the set § forbidden
patterns, and the boundedness condition comes from the alphabet chosen. Thus, *, is a
translation-like action in 7;(Z, G), and then x(x,) lies in X;(Z, G) by definition. But
X = X(x,), 50 it follows that x lies in X7 (Z, G). As x was an arbitrary element from X4,
we obtain the desired inclusion X¢ C X;(Z, G).

We now verify that, having G decidable word problem, the subshift X ; (Z, G) is effec-
tive. The definition of *, above is recursive: Given a pattern p on alphabet B and m € Z,
we can decide if the group element 1 *, m is defined, and compute it. This shows that
the conditions on patterns (1), (2), and (3) are decidable over patterns, and thus that J is a
decidable set of patterns. Thus, Xg is an effective subshift. n

We now describe an effective subshift on G whose elements describe, simultaneously,
translation-like actions, and configurations from a subshift over Z (see Figure 2). Let A be
an arbitrary finite alphabet, and let B be the alphabet already defined and which depends
on the natural number J. Elements of (4 x B)® can be conveniently written as (y, x)
for y € AG and x € BY. We will write 74: A x B — A and 7p: A x B — B for the
projections to the first and second coordinates, respectively.

Definition 5.20. For a one-dimensional subshift ¥ C A%, we define Y [X;(Z, G)] as the
set of all configurations (y, x) € (4 x B)Y such that the following two conditions are
satisfied:

1) xe X;(Z,G).

(2) Forevery g € G, the element m +— y(g *x m), m € Z,liesin Y.

Proposition 5.21. The set Y [X;(Z, G)] is a subshift. If G has decidable word problem
and Y is an effective subshift, then Y [X j(Z, G)] is an effective subshift.

Proof. Let ¥ be the set of all patterns in Z that do not appear in X, so that X = X,
and let § be as in the proof of Proposition 5.19. That is, Xg = Xj(Z, G). Define # to
be the set of all patterns p: B(1g,n) — A x B, n € N, such that some of the following
conditions hold:
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Figure 2. Representation of a finite pattern in a of configuration in Y [X2(Z, Z?)]. Here, A is the
alphabet {circle, square, rhombus}, and ¥ C AZ is the subshift of all sequences that alternate circle,
square, and rhombus in that order.

(1) The pattern g o p: B(1g,n) — B liesin g.
(2) Letg =mpo p: B(1g,n) - B.Forsomem € N, theelements g *, 1,...,g *x, m
are all defined, lie in B(1g, n), and the pattern r: {1,...,m} CZ — A,r(k) =
wa(g *4 k) liesin F.
It is easily verified that x € Y[X;(Z, G)] if and only if x € Xg. This shows that
Y[X;(Z,G)] is a subshift.

Now assume that G has decidable word problem, and ¥ is a computably enumerable
set. Then the first condition of # is decidable on patterns: Given a pattern p, we can com-
pute the pattern ¢ = wg o p: B(1g,n) — B, and we already proved that ¢ is a decidable
set. The second condition of # is semi-decidable: Given p and m € N, we can compute
the pattern r and semi-decide whether it lies in & . It follows that J is a computably
enumerable set. u

These constructions were introduced in [28] in the more general case where there is
a finitely generated group H instead of Z. We will write X;(H, G) and Y [X;(Z, G)]
with the same meaning as before, but only for reference purposes. It is natural to ask what
properties are preserved by the map Y — Y [X;(H, G)] that sends a subshift on H to a
subshift on G. The following is known:

(1) In [28], Jeandel proved that when H is a finitely presented group, this map pre-
serves weak aperiodicity, and the property of being empty/nonempty. This was
used to show the existence of weakly aperiodic subshifts on new groups, and the
undecidability of the emptiness problem for subshifts of finite type on new groups.

(2) In [3], Barbieri proved that when H and G are amenable groups, the topolog-
ical entropy h satisfies the formula A(Y [X;(H, G)]) = h(Y) + h(X;(H, G)).
This was used to classify the entropy of subshifts of finite type on some amenable
groups.
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In the present paper, we are interested in the algorithmic complexity of subshifts. We
already verified that Y +— Y [X;(Z, G)] preserves the property of being an effective
subshift, which is folklore. In the following result we use Theorem 1.7 to show that
Y — Y[X;(Z, G)] also preserves the Medvedev degree of a subshift when J is big
enough.

Theorem 5.22. Let G be a finitely generated infinite group with decidable word problem,
and suppose that J is big enough so that Ty (Z, G) contains an element as in Theorem 1.7.
Then for every subshift Y C A%,

Y =g Y[Xs(Z,G)].

Proof. Recall that we have a Medvedev reduction Y >gp X when there a computable
function ® defined on all elements of Y, and with ®(Y) C X. Intuitively, this means that
there is an algorithm which from any element in Y is able to compute an element in X. In
our case, we will consider computable functions between the represented spaces A% and
(A x B)Y, in the sense of Subsection 5.4.

Let * be a translation-like action as in Theorem 1.7, and let J be big enough so that
x lies in Ty (Z, G). We first prove the inequality Y >gn Y[X;(Z, G)]. The intuitive idea
is as follows. Given an element y € Y, we define an element (z, x) € Y[X;(Z, G)] by
setting x = x, (a computable point of B¢ because * is a computable function), and on
each orbit described by x4, we copy the sequence y. The fact that % has decidable orbit
membership problem is fundamental: When we compute the new element z € A%, we
need to know if two arbitrary group elements g, i can be colored independently (when
they lie in different orbits by ), or the color of one of them determines the color of the
other (when they lie in the same orbit by ).

Let (gn)neN be a computable numbering of G. We compute a set of representatives
for orbits of * as follows. Define a decidable set I C N by the condition that n € I when
gn 1s the first element in its own orbit that appears in the numbering (g, )neN- This con-
dition is decidable because * has decidable orbit membership problem. Thus, {g; | i € I}
contains exactly one representative for each orbit of .

We now define a computable function W4: 42 — A as follows. On input y, we define
W4 (y) by the expression

Wy(y)(gi xn)=yn), i€l nel.

The sets {g; * n | n € Z} partition G when we range i € I, and thus we defined W4 (y)(g)
for all g € G. To see that W4 is a computable function, we exhibit a procedure that given
y € AZ and g € G, outputs W4(y)(g). First, compute i € I such that g lies in the same
orbit as g;. This is possible as [ is a decidable set, and * has decidable orbit membership
problem. Then we use the fact that the action * is computable to find n € Z satisfying
g = gi * n. Finally, output y(n). As mentioned, this proves that W4 is a computable
function.



The geometric subgroup membership problem 31

Let Ug: AZ — BE be the function with constant value X, which is a computable
because x is a computable point. We define now a function ¥: 42 — (4 x B)? by
z> W(z) = (V4(z),¥p(2)). The function W is clearly computable, and we have W(Y) C
Y[Xs(Z, G)] by construction. This proves the desired inequality ¥ >g9n Y [X s (Z, G)].

The remaining inequality Y [Xj(Z, G)] =9y Y is clear. From an arbitrary element in
Y[X;(Z, G)] we can compute an element in Y: On input (z, x) we just have to follow
the arrows from 1g, read the A component of the alphabet, and the sequence obtained lies
in Y. More formally, we define the function ®: Y [X;(Z, G)] — Y by the expression

®(z,x)(n) =z(1g *xn), neZ.

It is clear from the expression above that ® is a computable function. This proves the
desired inequality Y >gp Y [X;(Z, G)]. |

We are now ready to prove Theorem 1.8.

Proof of Theorem 1.8. By Proposition 5.14, the Medvedev degree of every effective sub-
shift on G is a TT19 degree. It follows that the class of Medvedev degrees of effective
subshifts on G is contained in the class of 19 Medvedev degrees.

We now prove that every H(l’ Medvedev degree is attained by a subshift on G. Let
P C {0, 1} be an effectively closed set. By Miller’s theorem [34, Proposition 3.1], there
is an effective subshift on ¥ on Z, such that P =gy Y. Suppose that J is big enough so
that Ty (Z, G) contains an element as in Theorem 1.7. Then the subshift Y [X s (Z, G)] is
effective by Proposition 5.19, and it satisfies P =gy Y [X7(Z, G)] by Theorem 5.22. This
finishes the proof. ]

Our proof of Theorem 1.8 has made extensive use of the hypothesis of decidable word
problem, and it is unclear whether a similar method could work for recursively presented
groups.

Question 5.23. Let G be a recursively presented infinite group. Is it true that effective
subshifts on G attain all I19 Medvedev degrees?

Despite we have not considered recursively presented groups here, it can be proved
that for recursively presented groups, the Medvedev degrees of an effective subshift must
bea H(l) degree [4, Section 3].
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