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Disclaimer

In this talk all systems have discrete time Z or N (no flows) |

Measurable dynamical system

Measure preserving transformation T ~ (X, X, 1) on a probability
space.

Topological dynamical system
Continuous transformation T ~ (X, d) on a compact metric space.

Often they will be invertible, but not always J

N.C (U)) Slow entropy of some skew products 2025 2/32



Introduction
0e000000

What is this talk about?

@ Itis about a class of skew products S x, T ( defined soon).

N.C (U)) Slow entropy of some skew products 2025 3/32



Introduction
0e000000

What is this talk about?

@ Itis about a class of skew products S x, T ( defined soon).

® We are interested the complexity of these systems: entropy
and related concepts

N.C (U)) Slow entropy of some skew products 2025 3/32



Introduction
0e000000

What is this talk about?

@ Itis about a class of skew products S x, T ( defined soon).

® We are interested the complexity of these systems: entropy
and related concepts

© Natural problem: how can we distinguish S x. Ty and S x, To?

N.C (U)) Slow entropy of some skew products 2025 3/32



Introduction
0e000000

What is this talk about?

@ Itis about a class of skew products S x, T ( defined soon).

® We are interested the complexity of these systems: entropy
and related concepts

© Natural problem: how can we distinguish S x. Ty and S x, To?

@ This problem is well-studied for measure preserving systems;
we study it for topological systems.

N.C (U)) Slow entropy of some skew products 2025 3/32



Introduction
0e000000

What is this talk about?

@ Itis about a class of skew products S x, T ( defined soon).

® We are interested the complexity of these systems: entropy
and related concepts

© Natural problem: how can we distinguish S x. Ty and S x, To?

@ This problem is well-studied for measure preserving systems;
we study it for topological systems.

© We propose a solution based on slow entropy, an invariant
introduced by Katok and Thouvenot.
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The [T, T~'] system (informally)

Take your favorite measure preserving invertible transformation T
on a probability space. Flip a coin, and apply either T or its inverse
T—' depending on the coin.

For instance:

(Take the space
{(—1,1}2xT
and the transformation

(v, %) = (a(y). VO (x))

J
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The [T, T~'] system

The [T, T~'] system is the skew product
e Base:o ({—1,1}2,%,%)
e Fiber: T ~ (X, X, pn)
ox T~ {11}~

v, %) = (a(y), T"O(x))

In 1982 Kalikow proved that if T has positive entropy, then o x T is
K and not Bernoulli (first “natural” known examples).
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How can we distinguish these systems? J

One can prove that all of these systems have the same entropy

huyy  xuloxT)= hm’1 (0) =log2
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The entropy of the fiber disappears

How can we distinguish these systems? J

One can prove that all of these systems have the same entropy

hy,  xulcxT)=h,, ,(c)=log2

Nl
Nl
Nl

1
5

Is the entropy of the fiber an isomorphism invariant within this

class?:
o x Ty measurably isomorphicto o x T, = Ty and T, have the same

entropy.

v

N.C (U)) Slow entropy of some skew products 2025 6/32



Introduction
[e]e]e]e] Telele]

Comments

The entropy of the fiber disappears

How can we distinguish these systems? J

One can prove that all of these systems have the same entropy

hy,  xulcxT)=h,, ,(c)=log2

Nl
Nl
Nl

1
5

Is the entropy of the fiber an isomorphism invariant within this

class?:
o x Ty measurably isomorphicto o x To = T; and T, have the same

entropy.

Theorem (Austin 2015)
Yes.
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Generalized [T, T~'] systems

Generalized [T, T~'] systems are skew products:
@ Base: S~ (Y, ),v)
@ Cocycle: 7: Y — Z measurable
© Fiber: T ~ (X, X, ) invertible

The new transformation is

Sx;: T~ (Y, V,v) x (X, X, )

(v, %) = (S(y), TTV(x))
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What happens in the general case?

the fiber an isomorphism invariant in the corresponding class of

For which choices of S ~ (Y,Y,v)and 7: Y — Z is the entropy of
skew products? J

@ The one-sided Bernoulli shift S ~ ({-1, 1}N7M%’%) and
7(y) = y(0) (Heicklen, Hoffman, Rudolf 2000; Ball 2003)

® The two-sided Bernoulli shift S ~ ({—1, 1}2,%7%) and
7(y) = y(0) (Austin 2015)

© A mixing SFT S ~ (Y, ), v), v a Gibbs measure,and r: Y — Z
satisfying a technical condition (Austin 2015)
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e No known results with zero entropy systems in the base.
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What happens in the general case?

fiber entropy is an isomorphism invariant in this corresponding

For which choices of S ~ (Y,Y,v)and 7: Y — Z s it true that the
class of skew products? J

e No known results with zero entropy systems in the base.
e What happens for topological systems?
* We propose a solution, it works for a diverse class of Sand 7.
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@ Base: a subshift (Y, S)
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Topological skew products

We consider skew products given by:
@ Base: a subshift (Y, S)
® Cocycle: 7: Y — Z continuous
© Fiber: T ~ (X, d) invertible

The new transformation is

Sx, TnnYxX

(v, %) = (S(y), TV(x))
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The problem

The class of systems

For fixed (Y, S, 1), we consider the family of skew products S x, T,

where (X, T) is an arbitrary invertible topological dynamical
system.
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The problem

The class of systems

For fixed (Y, S, 1), we consider the family of skew products S x, T,
where (X, T) is an arbitrary invertible topological dynamical
system.

Broad problem
Find a way to distinguish these systems.

Specific problem

Determine if the entropy of the fiber T is an invariant for
topological conjugacy within this class.
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The problem

The class of systems

For fixed (Y, S, 1), we consider the family of skew products S x, T,
where (X, T) is an arbitrary invertible topological dynamical
system.

Broad problem
Find a way to distinguish these systems.

Specific problem

Determine if ertrepy entropy type invariants of the fiber T are an
invariant for topological conjugacy within this class.
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Intuition

The problem is interesting when the entropy of the fiber
“disappears”. Informally,

4 of (n, ¢)-Bowen balls ~ ™ /1or(S)+(Mhiop(T)
needed to cover the space

for some sublinear f(n).
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Intuition

The problem is interesting when the entropy of the fiber
“disappears”. Informally,

4 of (n, ¢)-Bowen balls ~ ™ /1or(S)+(Mhiop(T)

needed to cover the space

for some sublinear f(n).
We want to capture the contribution of h;p(T) in this relation.
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# of (n,e)-Bowen balls :=spa(T,n,e) neN,e>0
needed to cover the space
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Definition (Katok and Thouvenot '97)

Let @ = {an(t)}nen t>0 be a family of sequences with
e for each n, t — ap(t) is monotone,
e for each t, limp_ o an(t) = co
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Topological slow entropy

Definition (Katok and Thouvenot '97)

Let @ = {an(t)}nen t>0 be a family of sequences with
e for each n, t — ap(t) is monotone,
e for each t, limp_ o an(t) = 0o

The upper slow entropy of (X, T) with scale a is

enta(T) = lim enta( T, )

spa(T,n,e)
an(t)

enta(T,e) =sup({0} U{t>0:limsup
n—oo

> 0})
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enta(T, ) = sup({0} U{t > 0 :limsup ==~

> 0})

® One defines the lower slow entropy ent,(T) by taking lim inf
instead of lim sup.
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enta(T, ) = sup({0} U{t > 0 :limsup ==~

> 0})

® One defines the lower slow entropy ent,(T) by taking lim inf
instead of lim sup.

e The upper and lower slow entropy may not coincide (i.e. when
n — spa(T, n,¢) behave differently along different
subsequences)
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a0

enta(7T,e) =sup({0} U{t>0:limsup
n— oo

® One defines the lower slow entropy ent,(T) by taking lim inf
instead of lim sup.

e The upper and lower slow entropy may not coincide (i.e. when
n — spa(T, n,¢) behave differently along different
subsequences)

e With scale {€™}en t~0 We recover topological entropy.
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a0

enta(7T,e) =sup({0} U{t>0:limsup
n— oo

® One defines the lower slow entropy ent,(T) by taking lim inf
instead of lim sup.

e The upper and lower slow entropy may not coincide (i.e. when
n — spa(T, n,¢) behave differently along different
subsequences)

e With scale {€™}en t~0 We recover topological entropy.

e With scale {nf}neN’bo we obtain the so called polynomial
complexity or polynomial entropy of the system.
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The main result

Theorem (C, arXiv:2506.17932)

Let (Y, S) be a subshift and let 7: Y — 7Z be continuous. Then there is
a scale a depending only on (Y, S, 1) such that for every invertible
topological dynamical system (X, T) we have

ma(s X T) = e_nta(S A T) = htop(T),

provided that T satisfies the condition of being A-unbounded for some
A > 0 (defined soon).
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The main result

Theorem (C, arXiv:2506.17932)

Let (Y, S) be a subshift and let 7: Y — 7Z be continuous. Then there is
a scale a depending only on (Y, S, 1) such that for every invertible
topological dynamical system (X, T) we have

entg(S X T) = enta(S 37 T) = higp(T),

provided that T satisfies the condition of being A-unbounded for some
A > 0 (defined soon).

This shows that the entropy of the fiber is a conjugacy invariant in
the corresponding class of skew products S x T.
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A relative version of the main result

Theorem (C, arXiv:2506.17932)

Let (Y, S) be a subshiftand let 7. Y — {—1,0,1} be continuous. For
every scale b we can find a scale ¢ such that for every invertible
topological dynamical system (X, T) we have

enty(T) < ente(S x, T) < entp(T)

provided that T satisfies the condition of being A-unbounded for some
A > 0 (defined soon).

This shows that for any scale b, the slow entropy with scale b of the
fiber is a conjugacy invariant in this class of skew products, but we
must restrict to fiber systems with the property enty(T) = ent, (7).
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The property of being \-unbounded

e Assume that the cocycle 7: Y — Z only depends on the
zero-coordinate of the configuration.
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The property of being \-unbounded

e Assume that the cocycle 7: Y — Z only depends on the
zero-coordinate of the configuration.

® Fory € Y weinterpret N — Zﬁ;& 7(S"(y)) as awalk on Z, and
we define the range Ry(y) as the set of places in Z it visits in N
steps:

i—1
An(y) ={d_7(S8"(y):0<i<N-1}
n=0

N.C (U)) Slow entropy of some skew products 2025 19/32



Topological skew products
000000000 e000000

The property of being \-unbounded
e Assume that the cocycle 7: Y — Z only depends on the
zero-coordinate of the configuration.

® Fory € Y weinterpret N — Zﬁ;& 7(S"(y)) as awalk on Z, and
we define the range Ry(y) as the set of places in Z it visits in N
steps:

i—1
An(y) ={d_7(S8"(y):0<i<N-1}
n=0

e The condition says that Ry(y) is large with positive
“probability” A, this refers to the proportion of words in the
language of Y having some property.
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we define the range Ry(y) as the set of places in Z it visits in N
steps:

i—1
An(y) ={d_7(S8"(y):0<i<N-1}
n=0

e The condition says that Ry(y) is large with positive
“probability” A, this refers to the proportion of words in the
language of Y having some property.

* Ry(y) dependsonlyon yp...yn_1, SO we can also write Ry(w)
for a word w of length N that appearsin Y.
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Definition
Given a subshift (Y, S) and a cocycle 7: Y — Z depending only on
the zero coordinate of the configuration, we say that 7 is

A-unbounded (A > 0) if forall C e N

ming [ € Lo(Y) < [Bn(w)] > C}]
i inf Lo(Y) =4 )
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Definition
Given a subshift (Y, S) and a cocycle 7: Y — Z depending only on
the zero coordinate of the configuration, we say that 7 is

A-unbounded (A > 0) if forall C e N

ming [ € Lo(Y) < [Bn(w)] > C}]
i inf Lo(Y) =4

e If Ry(y) unbounded for all y, then this holds.
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Definition
Given a subshift (Y, S) and a cocycle 7: Y — Z depending only on
the zero coordinate of the configuration, we say that 7 is

A-unbounded (A > 0) if forall C e N

ming [ € Lo(Y) < [Bn(w)] > C}]
i inf Lo(Y) =4 )

e If Ry(y) unbounded for all y, then this holds.
e Also true for ({—1,1}%, “;,%)) and 7(y) = y(0).

N.C (U)) Slow entropy of some skew products 2025 20/32
Py P



Topological skew products
00000000000 e0000

Examples
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Example

(Y, S) is a minimal subshift and 7: Y — Z is not a coboundary (i.e.
T =g — go Sforsome continuous g: Y — R).
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Example
Y is a Sturmian subshift on symbols {0,1} and 7(y) = y(0). J
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Example
Y is a Sturmian subshift on symbols {0,1} and 7(y) = y(0). J

e Forany T we have hip(S %+ T) = hiop(S) + ahiop(T), SO
applying the main theorem is an overkill.
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Example
Y is a Sturmian subshift on symbols {0,1} and 7(y) = y(0). J

e Forany T we have hip(S %+ T) = hiop(S) + ahiop(T), SO
applying the main theorem is an overkill.

¢ The conclusion of the “relative main theorem” is nontrivial: if
Ty and T, have zero entropy but different polynomial
complexity (ent«(T1) < ent,(T2)), one obtains a scale for slow
entropy that distinguishes S x. Ty and S x, T».
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Example
The deterministic random walk (the subshift copy).
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Example
The deterministic random walk (the subshift copy).

e Choose an irrational «, and take the function p: [0,1) — {—1,1}
with value 1 on [0,1/2) and value —1 over [1/2,1).
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e Choose an irrational «, and take the function p: [0,1) — {—1,1}
with value 1 on [0,1/2) and value —1 over [1/2,1).

e Let(Y,S) be the smallest subshift on symbols {—1,1}
containing the sequence (p(Xx 4+ nNa))nez.
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e Choose an irrational «, and take the function p: [0,1) — {—1,1}
with value 1 on [0,1/2) and value —1 over [1/2,1).

e Let(Y,S) be the smallest subshift on symbols {—1,1}
containing the sequence (p(Xx 4+ nNa))nez.

e Take the cocycle 7: Y — Z, 7(y) = y(0).
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Example
The deterministic random walk (the subshift copy).

e Choose an irrational «, and take the function p: [0,1) — {—1,1}
with value 1 on [0,1/2) and value —1 over [1/2,1).

e Let(Y,S) be the smallest subshift on symbols {—1,1}
containing the sequence (p(Xx 4+ nNa))nez.

e Take the cocycle 7: Y — Z, 7(y) = y(0).

® Here hyp(S %~ T) = 0 for all choices of T.
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Example
The deterministic random walk (the subshift copy).

e Choose an irrational «, and take the function p: [0,1) — {—1,1}
with value 1 on [0,1/2) and value —1 over [1/2,1).

Let (Y, S) be the smallest subshift on symbols {—1,1}
containing the sequence (p(x + na))npez.

Take the cocycle 7: Y — Z, 7(y) = y(0).

Here hp(S % T) = 0 for all choices of T.

The main theorem shows that the entropy of T equals the slow
entropy of S x, T at some scale.
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Example
The deterministic random walk (the subshift copy).

e Choose an irrational «, and take the function p: [0,1) — {—1,1}
with value 1 on [0,1/2) and value —1 over [1/2,1).

Let (Y, S) be the smallest subshift on symbols {—1,1}
containing the sequence (p(x + na))npez.

Take the cocycle 7: Y — Z, 7(y) = y(0).

Here hp(S % T) = 0 for all choices of T.

The main theorem shows that the entropy of T equals the slow
entropy of S x, T at some scale.

The same is true for the slow entropy of T.
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Example
The full shift {—1,1}% and 7(y) = y(0) J
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Example
The full shift {—1,1}% and 7(y) = y(0) J

o Here hip(S x» T) = log(2) + f(htop(T)), for some
f: [0,00) — [0, 00) strictly increasing.
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The full shift {—1,1}% and 7(y) = y(0) J

o Here hip(S x» T) = log(2) + f(htop(T)), for some
f: [0,00) — [0, 00) strictly increasing.
¢ Applying the main theorem is an overkill.
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Examples

Example
The full shift {—1,1}% and 7(y) = y(0) J

o Here hip(S x» T) = log(2) + f(htop(T)), for some
f:]0,00) — [0, 00) strictly increasing.

¢ Applying the main theorem is an overkill.

e The conclusion of the “relative main theorem” is nontrivial: if
Ty and T, have zero entropy but different polynomial
complexity (ent:(T1) < ent(T2)), one obtains a scale for slow
entropy that distinguishes S x. Ty and S x, T».
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Proof idea J
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Proof idea
(o] Jelele]

Notation

Take a topological system T ~ (X, d).
Given F c Z finite, we write

dr(x,y) = max{d(T'(x), T'(y)):i e F}
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Proof idea
(o] Jelele]

Notation

Take a topological system T ~ (X, d).
Given F c Z finite, we write

dr(x,y) = max{d(T'(x), T'(y)):i e F}

and
spa(T, F,e¢)

equals the minimal number of Bowen df, e-balls needed to cover X.

v
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Proof idea

For the systems we consider S x, T,

spa(S >, T,{0,...,N—1}¢) =

N.C (U)) Slow entropy of some skew products 2025 28/32



Proof idea

For the systems we consider S x, T,

spa(Sx, T,{0,.... N—1},¢) = Z spa(T, Ry(w),e€)
WELN(Y)

N.C (U)) Slow entropy of some skew products 2025 28/32



Proof idea

For the systems we consider S x, T,

spa(Sx, T,{0,.... N—1},¢) = Z spa(T, Ry(w),e€)
WELN(Y)

If 7(y) € {—1,0,1} for all y then the sets Ry(w) are intervals J
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Proof idea

For the systems we consider S x, T,

spa(Sx, T,{0,.... N—1},¢) = Z spa(T, Ry(w),e€)
WELN(Y)

If 7(y) € {—1,0,1} for all y then the sets Ry(w) are intervals J

We can ignore the shape of Ry(w) and only care about their
cardinality. Remember that spa(T,{0,...,N — 1}, ¢) ~ etr(TIN,

~ Z el An(W)lhiop(T)
WELn(Y)
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Proof idea

We concluded

spa(Sx, T,{0,...,N—1}¢)
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Proof idea

We concluded

spa(Sx, T,{0,... ., N—1},e)~ Y elvlihen(T)
weln(Y)
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Proof idea

We concluded

spa(Sx, T,{0,... ., N—1},e)~ Y elvlihen(T)
weln(Y)

The scale for the first main theorem is

aN(t) — Z e"‘qN(W)“L

WELN(Y)
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Proof idea

We concluded

spa(Sx, T,{0,...,.N—1},¢) ~ Z el AN (W)l hiop(T)
weln(Y)
The scale for the first main theorem is
weln(Y)
We have enta(S 3 T) = hyp(T) because
® [ < hip(T) implies ZWGL,,(Y) elAnwW)It ZweLn(Y) el An (W) hiop(T)

® t> higp(T) implies 3= ,c; vy elANWIt 5 S wela(¥) el An(W)|rop(T)
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Proof idea
[e]e]ele] ]

General case

If 7 takes values outside {—1,0, 1}, the sets Ry(w) may have holes,
and this causes extra growth of spa(T, Ry(w), €).
For instance, if Ay(w) = {2,4,...,2N},

It is possible to quantify this extra contribution and include it to the
scale, so that they “cancels out”.

v
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Comments
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Comments and questions

Question: is it possible to prove analogous result for measure
preserving systems using measure-theoretic slow entropy? J
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Comments
e0

Comments and questions

Question: is it possible to prove analogous result for measure
preserving systems using measure-theoretic slow entropy? J
The scales constructed here don't work for these purposes (in
general). J
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Comments
oe

Thanks

Thanks

Thanks
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