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Introduction Topological skew products Proof idea Comments

Disclaimer

In this talk all systems have discrete time Z or N (no flows)

Measurable dynamical system
Measure preserving transformation T ↷ (X ,X , µ) on a probability
space.

Topological dynamical system
Continuous transformation T ↷ (X ,d) on a compact metric space.

Often they will be invertible, but not always
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What is this talk about?

1 It is about a class of skew products S ⋊τ T ( defined soon).

2 We are interested the complexity of these systems: entropy
and related concepts

3 Natural problem: how can we distinguish S ⋊τ T1 and S ⋊τ T2?
4 This problem is well-studied for measure preserving systems;

we study it for topological systems.
5 We propose a solution based on slow entropy, an invariant

introduced by Katok and Thouvenot.
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The [T ,T−1] system (informally)

Take your favorite measure preserving invertible transformation T
on a probability space. Flip a coin, and apply either T or its inverse
T−1 depending on the coin.

For instance:

Take the space

{−1,1}Z × T

and the transformation

(y , x) 7→ (σ(y),T y(0)(x))
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The [T ,T−1] system

The [T ,T−1] system is the skew product
• Base: σ ↷ ({−1,1}Z, µ 1

2 ,
1
2
)

• Fiber: T ↷ (X ,X , µ)

σ ⋊ T ↷ {−1,1}Z

(y , x) 7→ (σ(y),T y(0)(x))

In 1982 Kalikow proved that if T has positive entropy, then σ ⋊ T is
K and not Bernoulli (first “natural” known examples).
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The entropy of the fiber disappears
How can we distinguish these systems?

One can prove that all of these systems have the same entropy

hµ 1
2 , 1

2
×µ(σ ⋊ T ) = hµ 1

2 , 1
2
(σ) = log 2

Is the entropy of the fiber an isomorphism invariant within this
class?:
σ⋊ T1 measurably isomorphic to σ⋊ T2 ⇒ T1 and T2 have the same
entropy.

Theorem (Austin 2015)
Yes.
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Generalized [T ,T−1] systems

Generalized [T ,T−1] systems are skew products:
1 Base: S ↷ (Y ,Y, ν)

2 Cocycle: τ : Y → Z measurable
3 Fiber: T ↷ (X ,X , µ) invertible

The new transformation is

S ⋊τ T ↷ (Y ,Y, ν)× (X ,X , µ)

(y , x) 7→ (S(y),T τ(y)(x))
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What happens in the general case?

For which choices of S ↷ (Y ,Y, ν) and τ : Y → Z is the entropy of
the fiber an isomorphism invariant in the corresponding class of
skew products?

1 The one-sided Bernoulli shift S ↷ ({−1,1}N, µ 1
2 ,

1
2
) and

τ(y) = y(0) (Heicklen, Hoffman, Rudolf 2000; Ball 2003)
2 The two-sided Bernoulli shift S ↷ ({−1,1}Z, µ 1

2 ,
1
2
) and

τ(y) = y(0) (Austin 2015)
3 A mixing SFT S ↷ (Y ,Y, ν), ν a Gibbs measure, and τ : Y → Z

satisfying a technical condition (Austin 2015)
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Introduction Topological skew products Proof idea Comments

What happens in the general case?

For which choices of S ↷ (Y ,Y, ν) and τ : Y → Z is it true that the
fiber entropy is an isomorphism invariant in this corresponding
class of skew products?

• No known results with zero entropy systems in the base.

• What happens for topological systems?
• We propose a solution, it works for a diverse class of S and τ .
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Topological skew products

We consider skew products given by:

1 Base: a subshift (Y ,S)

2 Cocycle: τ : Y → Z continuous
3 Fiber: T ↷ (X ,d) invertible

The new transformation is

S ⋊τ T ↷ Y × X

(y , x) 7→ (S(y),T τ(y)(x))
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The problem

The class of systems
For fixed (Y ,S, τ), we consider the family of skew products S ⋊τ T ,
where (X ,T ) is an arbitrary invertible topological dynamical
system.

Broad problem
Find a way to distinguish these systems.

Specific problem
Determine if the entropy of the fiber T is an invariant for
topological conjugacy within this class.

N.C (UJ) Slow entropy of some skew products 2025 11 / 32
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Intuition

The problem is interesting when the entropy of the fiber
“disappears”. Informally,

# of (n, ϵ)-Bowen balls ≈ en·htop(S)+f (n)htop(T )

needed to cover the space

for some sublinear f (n).

We want to capture the contribution of htop(T ) in this relation.
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# of (n, ϵ)-Bowen balls := spa(T ,n, ϵ) n ∈ N, ϵ > 0
needed to cover the space
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Topological slow entropy

Definition (Katok and Thouvenot ’97)
Let a = {an(t)}n∈N,t>0 be a family of sequences with
• for each n, t → an(t) is monotone,
• for each t , limn→∞ an(t) = ∞

The upper slow entropy of (X ,T ) with scale a is

enta(T ) = lim
ϵ→0

enta(T , ϵ)

enta(T , ϵ) = sup({0} ∪ {t > 0 : lim sup
n→∞

spa(T ,n, ϵ)
an(t)

> 0})

N.C (UJ) Slow entropy of some skew products 2025 15 / 32
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enta(T , ϵ) = sup({0} ∪ {t > 0 : lim sup
n→∞

spa(T ,n, ϵ)
an(t)

> 0})

• One defines the lower slow entropy enta(T ) by taking lim inf
instead of lim sup.

• The upper and lower slow entropy may not coincide (i.e. when
n → spa(T ,n, ϵ) behave differently along different
subsequences)

• With scale {ent}n∈N,t>0 we recover topological entropy.
• With scale {nt}n∈N,t>0 we obtain the so called polynomial

complexity or polynomial entropy of the system.
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instead of lim sup.

• The upper and lower slow entropy may not coincide (i.e. when
n → spa(T ,n, ϵ) behave differently along different
subsequences)
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The main result

Theorem (C, arXiv:2506.17932)
Let (Y ,S) be a subshift and let τ : Y → Z be continuous. Then there is
a scale a depending only on (Y ,S, τ) such that for every invertible
topological dynamical system (X ,T ) we have

enta(S ⋊τ T ) = enta(S ⋊τ T ) = htop(T ),

provided that τ satisfies the condition of being λ-unbounded for some
λ > 0 (defined soon).

This shows that the entropy of the fiber is a conjugacy invariant in
the corresponding class of skew products S ⋊τ T .
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A relative version of the main result

Theorem (C, arXiv:2506.17932)
Let (Y ,S) be a subshift and let τ : Y → {−1,0,1} be continuous. For
every scale b we can find a scale c such that for every invertible
topological dynamical system (X ,T ) we have

entb(T ) ≤ entc(S ⋊τ T ) ≤ entb(T )

provided that τ satisfies the condition of being λ-unbounded for some
λ > 0 (defined soon).

This shows that for any scale b, the slow entropy with scale b of the
fiber is a conjugacy invariant in this class of skew products, but we
must restrict to fiber systems with the property entb(T ) = entb(T ).
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The property of being λ-unbounded
• Assume that the cocycle τ : Y → Z only depends on the

zero-coordinate of the configuration.

• For y ∈ Y we interpret N →
∑N−1

n=0 τ(Sn(y)) as a walk on Z, and
we define the range RN(y) as the set of places in Z it visits in N
steps:

RN(y) = {
i−1∑
n=0

τ(Sn(y)) : 0 ≤ i < N − 1}

• The condition says that RN(y) is large with positive
“probability” λ, this refers to the proportion of words in the
language of Y having some property.

• RN(y) depends only on y0 . . . yN−1, so we can also write RN(w)
for a word w of length N that appears in Y .
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Definition
Given a subshift (Y ,S) and a cocycle τ : Y → Z depending only on
the zero coordinate of the configuration, we say that τ is
λ-unbounded (λ > 0) if for all C ∈ N

lim inf
n→∞

|{w ∈ Ln(Y ) : |Rn(w)| ≥ C}|
|Ln(Y )|

≥ λ

• If Rn(y) unbounded for all y , then this holds.
• Also true for ({−1,1}Z, µ 1

2 ,
1
2
)) and τ(y) = y(0).
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Examples

Lets review some choices of (Y ,S) and τ that have this property.
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Example
(Y ,S) is a minimal subshift and τ : Y → Z is not a coboundary (i.e.
τ = g − g ◦ S for some continuous g : Y → R).
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Example
Y is a Sturmian subshift on symbols {0,1} and τ(y) = y(0).

• For any T we have htop(S ⋊τ T ) = htop(S) + αhtop(T ), so
applying the main theorem is an overkill.

• The conclusion of the “relative main theorem” is nontrivial: if
T1 and T2 have zero entropy but different polynomial
complexity (entnt (T1) < entnt (T2)), one obtains a scale for slow
entropy that distinguishes S ⋊τ T1 and S ⋊τ T2.
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Introduction Topological skew products Proof idea Comments

Example
The deterministic random walk (the subshift copy).

−1 +1

• Choose an irrational α, and take the function ρ : [0,1) → {−1,1}
with value 1 on [0,1/2) and value −1 over [1/2,1).

• Let (Y ,S) be the smallest subshift on symbols {−1,1}
containing the sequence (ρ(x + nα))n∈Z.

• Take the cocycle τ : Y → Z, τ(y) = y(0).

• Here htop(S ⋊τ T ) = 0 for all choices of T .
• The main theorem shows that the entropy of T equals the slow

entropy of S ⋊τ T at some scale.
• The same is true for the slow entropy of T .
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Examples

Example
The full shift {−1,1}Z and τ(y) = y(0)

• Here htop(S ⋊τ T ) = log(2) + f (htop(T )), for some
f : [0,∞) → [0,∞) strictly increasing.

• Applying the main theorem is an overkill.
• The conclusion of the “relative main theorem” is nontrivial: if

T1 and T2 have zero entropy but different polynomial
complexity (entnt (T1) < entnt (T2)), one obtains a scale for slow
entropy that distinguishes S ⋊τ T1 and S ⋊τ T2.
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Notation

Take a topological system T ↷ (X ,d).

Given F ⊂ Z finite, we write

dF (x , y) = max{d(T i(x),T i(y)) : i ∈ F}

and
spa(T ,F , ϵ)

equals the minimal number of Bowen dF , ϵ-balls needed to cover X .
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Proof idea
For the systems we consider S ⋊τ T ,

spa(S ⋊τ T , {0, . . . ,N − 1}, ϵ) ≈

∑
w∈LN(Y )

spa(T ,RN(w), ϵ)

If τ(y) ∈ {−1,0,1} for all y then the sets RN(w) are intervals

We can ignore the shape of RN(w) and only care about their
cardinality. Remember that spa(T , {0, . . . ,N − 1}, ϵ) ≈ ehtop(T )N .

≈
∑

w∈Ln(Y )

e|RN(w)|htop(T )
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Proof idea
We concluded

spa(S ⋊τ T , {0, . . . ,N − 1}, ϵ)

≈
∑

w∈LN(Y )

e|RN(w)|htop(T )

The scale for the first main theorem is

aN(t) =
∑

w∈LN(Y )

e|RN(w)|t

We have enta(S ⋊τ T ) = htop(T ) because
• t < htop(T ) implies

∑
w∈Ln(Y ) e|RN(w)|t <<

∑
w∈Ln(Y ) e|RN(w)|htop(T )

• t > htop(T ) implies
∑

w∈Ln(Y ) e|RN(w)|t >>
∑

w∈Ln(Y ) e|RN(w)|htop(T )
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General case

If τ takes values outside {−1,0,1}, the sets RN(w) may have holes,
and this causes extra growth of spa(T ,RN(w), ϵ).
For instance, if RN(w) = {2,4, . . . ,2N},

spa(T ,RN(w), ϵ) ≈ e2·htop(T )N

It is possible to quantify this extra contribution and include it to the
scale, so that they “cancels out”.
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Comments and questions

Question: is it possible to prove analogous result for measure
preserving systems using measure-theoretic slow entropy?

The scales constructed here don’t work for these purposes (in
general).
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Thanks
Thanks
Thanks
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