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Preliminaries

Preliminaries: shift spaces
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Shift spaces in the real world

Figure: Four tiles with pictures, from which we obtain a set of infinite
tilings of Z2.
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Shift spaces in the real world

Figure: One tile with pictures, from which we obtain a set of infinite
tilings of Z.
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Shift spaces on Zd

1 Alphabet A = a finite set (of colors, tiles, symbols, etc).
2 Configuration = x : Zd → A.
3 Subshift Zd = topologically closed subset of {x : Zd → A} for

some alphabet A, which is invariant under the action
Zd ↷ {x : Zd → A} by translations:

x 7→ σnx

(σnx)(m) = x(m − n).

4 These definitions can be easily extended to a countable group.
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SFT = subshift of finite type

Up to topological conjugacy, an SFT on Zd is the same as a space
of tilings obtained from tiles with pictures

Formally, a subshift is of finite type if it can be defined by a finite
set of forbidden patterns (p : {0, . . . , n}d → A).
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Periodicity and computability

Motivation I: Periodicity and computability
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Periodicity and computability

Theorem (Folklore)
In Z, every SFT has a periodic configuration.

Theorem (Berger 1966)
In Z2, there exists an SFT with no periodic configurations (no finite
orbits).

Theorem (Hanf and Myers, 1974)
In Z2 there is an uncomputable SFT, that is, all its configurations
are uncomputable.
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Computability

Definition
A configuration x : Zd → A is computable if there is a computer
program which on input n ∈ Zd , outputs x(n).

Example
A periodic configuration (a1 . . . an)

∞ in AZ is computable.

Example
A periodic configuration in AZ2

(the infinite repetition of a n ×m
pattern) is also computable.
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Computability is a dynamical property

Definition
A subshift is called uncomputable when all its configurations are
not computable.

Theorem
Being uncomputable is a dynamical property in the class of
subshifts: it is preserved by topological conjugacy .

Theorem
For subshifts, uncomputable ⇒ aperiodic (no configuration has
finite orbit)
These properties are valid for finitely generated groups!
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Periodicity and computability

It is an open question which groups:
admit aperiodic SFTs
admit uncomputable SFTs

In many groups, the techniques which have allowed to answer one
question, have also allowed to answer the other.
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Periodicity and computability

Motivation II: The space of all subshifts and its isolated
points



Preliminaries Periodicity and computability The space of all subshifts The invariant m What is known? References

The space of all subshifts

We consider the metric space (Sd , d) of all subshifts on Zd

Sd = {X subshift on Zd with alphabet and A ⊂ N}

d(X ,Y ) = 2−n, n = max{k | Lk(X ) = Lk(Y )}

Lk(X ) = {x |Bk
: x ∈ X}, Bk = {−k , . . . , k}d ⊂ Zd .
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The space S1

Theorem (Pavlov and Schmieding 2022)
The set of isolated points of S1 is dense in S1, and in particular
generic.

It follows that to study generic properties in S1, it is enough to do
it on isolated points.

Figure: The space S1
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The space S2

Theorem (C, Núñez, y Sablik)
The set of isolated points in S2 is not dense.

It follows that to study generic properties in S2, it is not enough
to do it on isolated points.

Figure: The space S2
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The space S2

Theorem (C, Núñez, y Sablik)
The set of isolated points in S2 is not dense.
It follows that to study generic properties in S2, it is not enough
to do it on isolated points.

Figure: The space S2



Preliminaries Periodicity and computability The space of all subshifts The invariant m What is known? References

El espacio S2

Theorem (C, Núñez, y Sablik)
If X is an uncomputable SFT, then it has a neighborhood with no
isolated points.

Figure: The space S2
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The invariant m

The invariant m
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The invariant m
The invariant m measures how uncomputable is a subshift.

It takes values on a partially ordered set (M,≤M) which is a lattice
and has a minimal element 0M .

a b

a∨b

a^b

• X has computable configurations
⇐⇒ m(X ) = 0M

• X ↠ Y ⇒ m(X ) ≥ m(Y )

• m is a dynamical property

• m(X ⊔ Y ) = inf{m(X ),m(Y )},
m(X × Y ) = sup{m(X ),m(Y )}.

• These properties hold for G finitely
generated!

• Compare with topological entropy for
amenable groups.
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Formal definition

a b

a∨b

a^b

Definition (Medvedev 1955)
Let P,Q ⊂ {0, 1}N. We write

P ≤M Q

when there is a computable function Q → P .

• From ≤M we obtain an equivalence relation ≡M

• (M,≤M) equvalence classes of ≡M

• Elements in (M,≤M) are called Medvedev degrees.

• This extends to subsets of AG .
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What is it known?

What is it known about m as dynamical invariant for sub-
shfits?
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The classification problem

Classic question:

{h(X ) | X in certain class}?

Recent question:

{m(X ) | X in certain class}?

This question has been implicit in the literature for some time. My
thesis is about this question.
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What is known about SFTs

• In Z, m(X ) = 0M for every SFT (folklore,
periodic points)

• In Zd , d ≥ 2, SFTs attain all Π0
1 elements

in the lattice M. (Simpson, 2012)

• What happens in other groups?
This problem is rather hard, and we
studied the classification problem for
effective subshifts.
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SFT → effective subshifts

• Effective subshifts = of subshifts which
contains SFTs and sofic subshifts

• In Z, effective subshifts attain all Π0
1

elements in the lattice M. (Miller, 2011)

• This classification extends to every finitely
generated group which is infinite and has
decidable word problem (The geometric
subgroup membership problem, N. C.
Preprint).
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Thanks!

Thanks!
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