rel	imiı			
oc	000	000	00	

Medvedev degrees

The classification problem

Medvedev degrees of subshifts

Nicanor Carrasco-Vargas

Jagiellonian University

December 2024

Mostly based on a joint work with S. Barbieri

 $Beamer \rightarrow nicanor carras covargas.github.io$

nicanor.vargas@uj.edu.pl

Medvedev degrees

The classification problem

Plan for the talk

- 1 Preliminaries
- 2 Introduction
- 3 Motivation
- 4 Medvedev degrees
- **5** The classification problem

Medvedev degrees

The classification problem

Preliminaries

Simbolic dynamics, and a bit of computability.

Medvedev degrees

The classification problem

Tilings of \mathbb{Z}^2

A **tile** is a unit square with colored sides, and a tileset τ is a finite set of tiles.

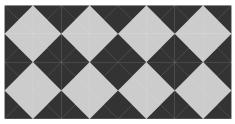
Medvedev degrees

The classification problem

Tilings of \mathbb{Z}^2

A **tile** is a unit square with colored sides, and a tileset τ is a finite set of tiles.

A map $x: \mathbb{Z}^2 \to \tau$ is called a **correct** tiling if adjacent tiles have the same color in their adjacent side.



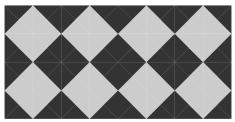
Medvedev degrees

The classification problem

Tilings of \mathbb{Z}^2

A **tile** is a unit square with colored sides, and a tileset τ is a finite set of tiles.

A map $x: \mathbb{Z}^2 \to \tau$ is called a **correct** tiling if adjacent tiles have the same color in their adjacent side.



The set $X_{\tau} = \{x \colon \mathbb{Z}^2 \to \tau : x \text{ is a correct tiling } \}$ is a subshift of finite type.

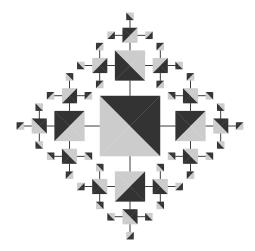
N.C (UJ)

Medvedev degrees

The classification problem

Tilings of finitely generated groups

A correct tiling with τ on the free group with two generators:



The classification problem

Tilings of finitely generated groups

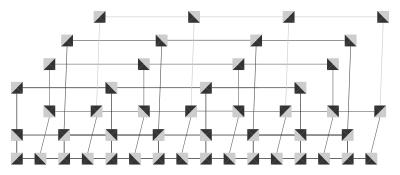
A correct tiling with τ on \mathbb{Z} :

Medvedev degrees

The classification problem

Tilings of finitely generated groups

A correct tiling with τ on the Baumslag-Solitar group $\langle a, b : ab = b^2 a \rangle$:

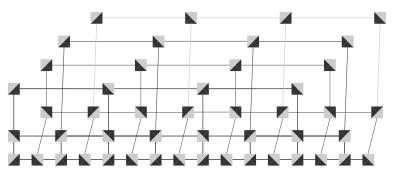


Medvedev degrees

The classification problem

Tilings of finitely generated groups

A correct tiling with τ on the Baumslag-Solitar group $\langle a, b : ab = b^2 a \rangle$:



In a group with *n* generators, a tile would be *n*-dimensional cube with colored faces, or simply a tuple of colors of length 2*n*.

The classification problem

Subshifts on finitely generated groups

• Let *G* be a finitely generated group and let *A* be a finite alphabet.

Medvedev degrees

The classification problem

- Let *G* be a finitely generated group and let *A* be a finite alphabet.
- Endow *A* with the discrete topology and *A^G* with the product topology, so it is compact.

Medvedev degrees

The classification problem

- Let *G* be a finitely generated group and let *A* be a finite alphabet.
- Endow *A* with the discrete topology and *A^G* with the product topology, so it is compact.
- **Configuration** = a function $x: G \rightarrow A$.

Medvedev degrees

The classification problem

- Let *G* be a finitely generated group and let *A* be a finite alphabet.
- Endow *A* with the discrete topology and *A^G* with the product topology, so it is compact.
- **Configuration** = a function $x: G \rightarrow A$.
- Shift action = $G \curvearrowright A^G$, $gx(h) = x(g^{-1}h)$.

- Let *G* be a finitely generated group and let *A* be a finite alphabet.
- Endow *A* with the discrete topology and *A^G* with the product topology, so it is compact.
- **Configuration** = a function $x: G \rightarrow A$.
- Shift action = $G \curvearrowright A^G$, $gx(h) = x(g^{-1}h)$.
- **Subshift** = closed and shift-invariant subset of A^G.

Medvedev degrees

The classification problem

Subshifts of finite type

• **Subshift of finite type (SFT)** = subshift that can be defined with a finite set of forbidden patterns.

Medvedev degrees

The classification problem

Subshifts of finite type

- **Subshift of finite type (SFT)** = subshift that can be defined with a finite set of forbidden patterns.
- For instance, the set X_{τ} of all correct tilings with τ is a subshift of finite type:

Medvedev degrees

Subshifts of finite type

- **Subshift of finite type (SFT)** = subshift that can be defined with a finite set of forbidden patterns.
- For instance, the set X_{τ} of all correct tilings with τ is a subshift of finite type:

• Every subshifts of finite type is conjugate to X_{τ} for some finite tileset τ .

Medvedev degrees

The classification problem

Morphisms of subshifts

Definition

A **morphism** of subshifts $\phi: X \to Y$ is a continuous map that commutes with the shift action.

Medvedev degrees

The classification problem

Morphisms of subshifts

Definition

A **morphism** of subshifts $\phi: X \to Y$ is a continuous map that commutes with the shift action.

Example

Take a permutation $p: A \rightarrow A$ and define $\phi: A^G \rightarrow A^G$ by

 $\phi(x)(g) = p(x(g))$

Medvedev degrees

The classification problem

Morphisms of subshifts

Definition

A **morphism** of subshifts $\phi: X \to Y$ is a continuous map that commutes with the shift action.

Example

Take a permutation $p: A \rightarrow A$ and define $\phi: A^G \rightarrow A^G$ by

 $\phi(x)(g) = p(x(g))$

Theorem (Curtis, Hedlund, Lyndon)

If ϕ is a morphism then there is $F \subset G$, finite alphabets A and B, and a "local function" $f \colon A^F \to B$ such that:

$$\phi(x)(g) = f((g^{-1}x)|_F)$$

Medvedev degrees

The classification problem

Standing assumption

Standing assumption

G is always a finitely generated group with decidable word problem.

Medvedev degrees

The classification problem

Standing assumption

Standing assumption

G is always a finitely generated group with decidable word problem.

Assuming decidable word problem is not needed for most results, but things are simpler.

Medvedev degrees

The classification problem

Computable points

Definition

A configuration $x \in A^G$ is **computable** if there is an algorithm which on input g outputs x(g).

Medvedev degrees

The classification problem

Computable points

Definition

A configuration $x \in A^G$ is **computable** if there is an algorithm which on input g outputs x(g).

Example

1 A constant configuration.

Medvedev degrees

The classification problem

Computable points

Definition

A configuration $x \in A^G$ is **computable** if there is an algorithm which on input g outputs x(g).

Example

- 1 A constant configuration.
- A configuration with finite orbit under shifts.

Medvedev degrees

Computable points

Definition

A configuration $x \in A^G$ is **computable** if there is an algorithm which on input g outputs x(g).

Example

- 1 A constant configuration.
- 2 A configuration with finite orbit under shifts.
- If we modify a computable configuration in finitely many values, we obtain a computable configuration.

Medvedev degrees

The classification problem

Computable points

Definition

A configuration $x \in A^G$ is **computable** if there is an algorithm which on input g outputs x(g).

Example

- A constant configuration.
- 2 A configuration with finite orbit under shifts.
- If we modify a computable configuration in finitely many values, we obtain a computable configuration.

Non-Examples

The set of computable configurations is dense but countable.

N.C (UJ)

Medvedev degrees of subshifts

2024

12/42

The classification problem ୦୦୦୦୦୦୦୦୦୦୦

Introduction

What is this thing?

The classification problem

The theorem of Hanf and Myers

Theorem (Hanf and Myers, 1974)

There is an SFT on \mathbb{Z}^2 that contains no computable point.

The classification problem

The theorem of Hanf and Myers

Theorem (Hanf and Myers, 1974)

There is an SFT on \mathbb{Z}^2 that contains no computable point.

Remark

Intuitively, a puzzle with no computable solution.

Medvedev degrees

The classification problem

A conjugacy invariant

Remark

A conjugacy of subshifts sends computable points to computable points.

Medvedev degrees

The classification problem

A conjugacy invariant

Remark

A conjugacy of subshifts sends computable points to computable points.

Remark

The property of having exclusively uncomputable elements is a conjugacy invariant.

Preliminaries 0000000000	Introduction 000	Motivation ●00000000	Medvedev degrees	The classification problem

Why is "having only uncomputable points" an interesting property?

Medvedev degrees

The classification problem

Aperiodicity

Proposition (Folklore)

An SFT with only uncomputable points is weakly aperiodic (no finite orbits).

Medvedev degrees

The classification problem

Aperiodicity

Proposition (Folklore)

An SFT with only uncomputable points is weakly aperiodic (no finite orbits).

Proof.

Finite orbits are computable.

Medvedev degrees

The classification problem

Minimality

Proposition (Folklore)

A minimal SFT has a density of computable points.

Medvedev degrees

The classification problem

Minimality

Proposition (Folklore)

A minimal SFT has a density of computable points.

Corollary

Let X be an SFT with no computable points. Then an SFT contained in X is not minimal.

Minimality

A subshift is **sofic** when it is the topological factor of an SFT.

Proposition

A minimal sofic subshift has a density of computable points.

Minimality

A subshift is **sofic** when it is the topological factor of an SFT.

Proposition

A minimal sofic subshift has a density of computable points.

Corollary

Let *X* be a sofic subshift with no computable points. Then any sofic subsystem of *X* is not minimal, nor a finite union of minimal subshifts.

The classification problem

The strong topological Rokhlin property

Definition

G has the strong topological Rokhlin property if the space of actions $G \curvearrowright \{0, 1\}^{\mathbb{N}}$ contains a generic element.

1 \checkmark \mathbb{Z} (Kechris and Rosendal, 2007)

The classification problem

The strong topological Rokhlin property

Definition

G has the strong topological Rokhlin property if the space of actions $G \curvearrowright \{0, 1\}^{\mathbb{N}}$ contains a generic element.

- **1** \checkmark \mathbb{Z} (Kechris and Rosendal, 2007)
- ② ✓ Finitely generated free groups (Kwiatkowska 2012)

The classification problem

The strong topological Rokhlin property

Definition

G has the strong topological Rokhlin property if the space of actions $G \curvearrowright \{0, 1\}^{\mathbb{N}}$ contains a generic element.

- **1** \checkmark \mathbb{Z} (Kechris and Rosendal, 2007)
- ② ✓ Finitely generated free groups (Kwiatkowska 2012)
- **3** $X \mathbb{Z}^d$ for $d \ge 2$ (Hochman, 2012)

The classification problem

The strong topological Rokhlin property

Definition

G has the strong topological Rokhlin property if the space of actions $G \curvearrowright \{0, 1\}^{\mathbb{N}}$ contains a generic element.

- **1** \checkmark \mathbb{Z} (Kechris and Rosendal, 2007)
- ② ✓ Finitely generated free groups (Kwiatkowska 2012)
- **3** $X \mathbb{Z}^d$ for $d \ge 2$ (Hochman, 2012)

Medvedev degrees

The classification problem ୦୦୦୦୦୦୦୦୦୦୦

Hochman's proof

An ingredient in Hochman's proof is the existence of SFTs on \mathbb{Z}^2 with no computable element.

Medvedev degrees

The classification problem ୦୦୦୦୦୦୦୦୦୦୦

Hochman's proof

An ingredient in Hochman's proof is the existence of SFTs on \mathbb{Z}^2 with no computable element. Let's review it.

Medvedev degrees

The classification problem

The space of subshifts Given a subshift *X* we write

$$S(X) = \{ Y \subset X : Y \text{ subshift} \}.$$

Medvedev degrees

The space of subshifts Given a subshift *X* we write

 $\mathcal{S}(X) = \{ Y \subset X : Y \text{ subshift} \}.$

We endow S(X) with a Hausdorff metric.

Medvedev degrees

The space of subshifts Given a subshift *X* we write

 $\mathcal{S}(X) = \{ Y \subset X : Y \text{ subshift} \}.$

We endow S(X) with a Hausdorff metric.

Theorem (Doucha)

A finitely generated group *G* has STRP if and only if projectively isolated subshifts are dense in $S(A^G)$ for all finite *A*.

Medvedev degrees

The space of subshifts Given a subshift *X* we write

 $\mathcal{S}(X) = \{ Y \subset X : Y \text{ subshift} \}.$

We endow S(X) with a Hausdorff metric.

Theorem (Doucha)

A finitely generated group *G* has STRP if and only if projectively isolated subshifts are dense in $S(A^G)$ for all finite *A*.

Definition (Doucha)

A subshift $X \subset B^G$ is projectively isolated if there is a morphism $\phi: A^G \to B^G$ and an open set $U \subset S(A^G)$ such that $\phi(U) = \{X\}$.

Medvedev degrees

The space of subshifts Given a subshift *X* we write

 $\mathcal{S}(X) = \{ Y \subset X : Y \text{ subshift} \}.$

We endow S(X) with a Hausdorff metric.

Theorem (Doucha)

A finitely generated group *G* has STRP if and only if projectively isolated subshifts are dense in $S(A^G)$ for all finite *A*.

Definition (Doucha)

A subshift $X \subset B^G$ is projectively isolated if there is a morphism $\phi: A^G \to B^G$ and an open set $U \subset S(A^G)$ such that $\phi(U) = \{X\}$.

Hochman actually proved that projectively isolated subshifts are not dense in $S(A^{\mathbb{Z}^2})$.

N.C (UJ)

Medvedev degrees of subshifts

2024

22/42

Preliminaries 000000000	Introduction	Motivation ooooooo●o	Medvedev degrees	The classification problem

The following property of an SFT *Y* implies that it has a neighborhood without projectively isolated subshifts:

Y factors onto a subshift Z which equals the union of its minimal subsystems, and which has no computable configuration.

Preliminaries 000000000	Introduction	Motivation ooooooo●o	Medvedev degrees	The classification problem

The following property of an SFT *Y* implies that it has a neighborhood without projectively isolated subshifts:

Y factors onto a subshift Z which equals the union of its minimal subsystems, and which has no computable configuration.

Hochman constructed an SFT with this property, and used this to derive that \mathbb{Z}^2 does not have STRP.

Let $\rho: Y \to Z$ be a factor map where Y is SFT, Z is the union of its minimal subsystems, and Z has no computable point. Let W be a subshift of finite type with a morphism $\pi: W \to Y$, so that W factors onto a subsystem of Y. Then for all ε there is a subshift $W_{\varepsilon} \subset W$ with $d_{H}(W, W_{\varepsilon}) \leq \varepsilon$ and $\pi(W) \neq \pi(W_{\varepsilon})$.

Let $\rho: Y \to Z$ be a factor map where Y is SFT, Z is the union of its minimal subsystems, and Z has no computable point. Let W be a subshift of finite type with a morphism $\pi: W \to Y$, so that W factors onto a subsystem of Y. Then for all ε there is a subshift $W_{\varepsilon} \subset W$ with $d_{H}(W, W_{\varepsilon}) \leq \varepsilon$ and $\pi(W) \neq \pi(W_{\varepsilon})$.

1 Let
$$Z' := (\pi \rho)(W)$$
,

Let $\rho: Y \to Z$ be a factor map where Y is SFT, Z is the union of its minimal subsystems, and Z has no computable point. Let W be a subshift of finite type with a morphism $\pi: W \to Y$, so that W factors onto a subsystem of Y. Then for all ε there is a subshift $W_{\varepsilon} \subset W$ with $d_H(W, W_{\varepsilon}) \leq \varepsilon$ and $\pi(W) \neq \pi(W_{\varepsilon})$.

Proof idea:

1 Let $Z' := (\pi \rho)(W)$, it is sofic,

Let $\rho: Y \to Z$ be a factor map where Y is SFT, Z is the union of its minimal subsystems, and Z has no computable point. Let W be a subshift of finite type with a morphism $\pi: W \to Y$, so that W factors onto a subsystem of Y. Then for all ε there is a subshift $W_{\varepsilon} \subset W$ with $d_{H}(W, W_{\varepsilon}) \leq \varepsilon$ and $\pi(W) \neq \pi(W_{\varepsilon})$.

Proof idea:

1 Let $Z' := (\pi \rho)(W)$, it is sofic, it equals the union of its minimal subsystems

Let $\rho: Y \to Z$ be a factor map where Y is SFT, Z is the union of its minimal subsystems, and Z has no computable point. Let W be a subshift of finite type with a morphism $\pi: W \to Y$, so that W factors onto a subsystem of Y. Then for all ε there is a subshift $W_{\varepsilon} \subset W$ with $d_H(W, W_{\varepsilon}) \leq \varepsilon$ and $\pi(W) \neq \pi(W_{\varepsilon})$.

- 1 Let $Z' := (\pi \rho)(W)$, it is sofic, it equals the union of its minimal subsystems
- **2** Note that S(Z') has no isolated points:

Preliminaries 0000000000	Introduction 000	Motivation	Medvedev degrees	The classification problem

Let $\rho: Y \to Z$ be a factor map where Y is SFT, Z is the union of its minimal subsystems, and Z has no computable point. Let W be a subshift of finite type with a morphism $\pi: W \to Y$, so that W factors onto a subsystem of Y. Then for all ε there is a subshift $W_{\varepsilon} \subset W$ with $d_{H}(W, W_{\varepsilon}) \leq \varepsilon$ and $\pi(W) \neq \pi(W_{\varepsilon})$.

- **1** Let $Z' := (\pi \rho)(W)$, it is sofic, it equals the union of its minimal subsystems
- 2 Note that S(Z') has no isolated points: Indeed, if $Z_l \subset Z'$ is isolated in S(Z') then it is equal to a finite union of minimal systems.

Preliminaries 000000000	Introduction 000	Motivation ooooooo●	Medvedev degrees	The classification problem

Let $\rho: Y \to Z$ be a factor map where Y is SFT, Z is the union of its minimal subsystems, and Z has no computable point. Let W be a subshift of finite type with a morphism $\pi: W \to Y$, so that W factors onto a subsystem of Y. Then for all ε there is a subshift $W_{\varepsilon} \subset W$ with $d_{H}(W, W_{\varepsilon}) \leq \varepsilon$ and $\pi(W) \neq \pi(W_{\varepsilon})$.

- **1** Let $Z' := (\pi \rho)(W)$, it is sofic, it equals the union of its minimal subsystems
- 2 Note that S(Z') has no isolated points: Indeed, if $Z_i \subset Z'$ is isolated in S(Z') then it is equal to a finite union of minimal systems. But Z_i is also sofic.

Let $\rho: Y \to Z$ be a factor map where Y is SFT, Z is the union of its minimal subsystems, and Z has no computable point. Let W be a subshift of finite type with a morphism $\pi: W \to Y$, so that W factors onto a subsystem of Y. Then for all ε there is a subshift $W_{\varepsilon} \subset W$ with $d_{H}(W, W_{\varepsilon}) \leq \varepsilon$ and $\pi(W) \neq \pi(W_{\varepsilon})$.

- **1** Let $Z' := (\pi \rho)(W)$, it is sofic, it equals the union of its minimal subsystems
- 2 Note that S(Z') has no isolated points: Indeed, if $Z_i \subset Z'$ is isolated in S(Z') then it is equal to a finite union of minimal systems. But Z_i is also sofic. This implies that Z_i have computable points, a contradiction.
- **3** For all *n* we can write $S(Z') = S(Z_1) \sqcup S(Z_2) \sqcup \cdots \sqcup S(Z_n)$ for nonempty subshifts $Z_i \subset Z'$.

Preliminaries 0000000000	Introduction 000	Motivation 00000000●	Medvedev degrees	The classification problem

Let $\rho: Y \to Z$ be a factor map where Y is SFT, Z is the union of its minimal subsystems, and Z has no computable point. Let W be a subshift of finite type with a morphism $\pi: W \to Y$, so that W factors onto a subsystem of Y. Then for all ε there is a subshift $W_{\varepsilon} \subset W$ with $d_{H}(W, W_{\varepsilon}) \leq \varepsilon$ and $\pi(W) \neq \pi(W_{\varepsilon})$.

- **1** Let $Z' := (\pi \rho)(W)$, it is sofic, it equals the union of its minimal subsystems
- 2 Note that S(Z') has no isolated points: Indeed, if $Z_i \subset Z'$ is isolated in S(Z') then it is equal to a finite union of minimal systems. But Z_i is also sofic. This implies that Z_i have computable points, a contradiction.
- **3** For all *n* we can write $S(Z') = S(Z_1) \sqcup S(Z_2) \sqcup \cdots \sqcup S(Z_n)$ for nonempty subshifts $Z_i \subset Z'$.
- 4 For well chosen *n* and $j \leq n$, the following works:

$$W_{\varepsilon} = (\pi \rho)^{-1} (\bigcup_{\substack{1 \le i \le n \\ i \ne j}} Z_i)$$

Medvedev degrees

The classification problem ୦୦୦୦୦୦୦୦୦୦୦

Medvedev degrees

What are Medvedev degrees?

The intuitive idea

Let *X* be a subshift. Its Medvedev degree

m(X)

is a complexity measure that captures the property of "having no computable element".

The intuitive idea

Let *X* be a subshift. Its Medvedev degree

m(X)

is a complexity measure that captures the property of "having no computable element". Indeed:

 $m(X) = 0 \iff X$ has some computable configuration

The intuitive idea

Let *X* be a subshift. Its Medvedev degree

m(X)

is a complexity measure that captures the property of "having no computable element". Indeed:

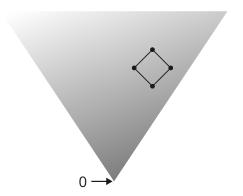
 $m(X) = 0 \iff X$ has some computable configuration

All the talk we have been looking at the property $m(X) \neq 0$.

Medvedev degrees

The classification problem

The lattice of Medvedev degrees



Medvedev degrees have a partial order \leq , a minimal element 0, and operations of sup and inf.

The classification problem

Medvedev degrees of subshifts

Proposition

Let *X* and *Y* be subshifts.

1 If *X* factors over *Y*, then $m(X) \ge m(Y)$.

The classification problem

Medvedev degrees of subshifts

Proposition

Let X and Y be subshifts.

- **1** If *X* factors over *Y*, then $m(X) \ge m(Y)$.
- 2 If X embeds into Y, then $m(X) \ge m(Y)$.

The classification problem

Medvedev degrees of subshifts

Proposition

Let X and Y be subshifts.

- **1** If *X* factors over *Y*, then $m(X) \ge m(Y)$.
- 2 If X embeds into Y, then $m(X) \ge m(Y)$.

$$m(X \times Y) = \sup\{m(X), m(Y)\}.$$

The classification problem

Medvedev degrees of subshifts

Proposition

Let X and Y be subshifts.

- **1** If *X* factors over *Y*, then $m(X) \ge m(Y)$.
- 2 If X embeds into Y, then $m(X) \ge m(Y)$.

$$m(X \times Y) = \sup\{m(X), m(Y)\}.$$

$$m(X \sqcup Y) = \inf\{m(X), m(Y)\}.$$

Medvedev degrees

The classification problem

The set of Medvedev degrees

Medvedev degrees are the classes of an equivalence relation \equiv_M on all subsets of $\{0, 1\}^{\mathbb{N}}$.

Medvedev degrees

The set of Medvedev degrees

Medvedev degrees are the classes of an equivalence relation \equiv_M on all subsets of $\{0, 1\}^{\mathbb{N}}$.

Definition

Let $P, Q \subset \{0, 1\}^{\mathbb{N}}$.

1 We write $P \leq_M Q$ if there is a computable function Φ on $\{0, 1\}^{\mathbb{N}}$ whose domain contains Q and which maps every element in Q to P (i.e. $\Phi(Q) \subset P$).

Medvedev degrees

The set of Medvedev degrees

Medvedev degrees are the classes of an equivalence relation \equiv_M on all subsets of $\{0, 1\}^{\mathbb{N}}$.

Definition

Let $P, Q \subset \{0, 1\}^{\mathbb{N}}$.

- **1** We write $P \leq_M Q$ if there is a computable function Φ on $\{0, 1\}^{\mathbb{N}}$ whose domain contains Q and which maps every element in Q to P (i.e. $\Phi(Q) \subset P$).
- **2** We write $P \equiv_M Q$ if $P \leq_M Q$ and $Q \leq_M P$.

Medvedev degrees

The set of Medvedev degrees

Medvedev degrees are the classes of an equivalence relation \equiv_M on all subsets of $\{0, 1\}^{\mathbb{N}}$.

Definition

Let $P, Q \subset \{0, 1\}^{\mathbb{N}}$.

- **1** We write $P \leq_M Q$ if there is a computable function Φ on $\{0, 1\}^{\mathbb{N}}$ whose domain contains Q and which maps every element in Q to P (i.e. $\Phi(Q) \subset P$).
- **2** We write $P \equiv_M Q$ if $P \leq_M Q$ and $Q \leq_M P$.
- **3** The Medvedev degree of *P*, written m(P), is its equivalence class by \equiv_M .

Medvedev degrees

The set of Medvedev degrees

Medvedev degrees are the classes of an equivalence relation \equiv_M on all subsets of $\{0, 1\}^{\mathbb{N}}$.

Definition

Let $P, Q \subset \{0, 1\}^{\mathbb{N}}$.

- **1** We write $P ≤_M Q$ if there is a computable function Φ on $\{0, 1\}^{\mathbb{N}}$ whose domain contains *Q* and which maps every element in *Q* to *P* (i.e. Φ(Q) ⊂ P).
- **2** We write $P \equiv_M Q$ if $P \leq_M Q$ and $Q \leq_M P$.
- **3** The Medvedev degree of *P*, written m(P), is its equivalence class by \equiv_M .
- $\ \, \bullet \ \, \textbf{M}(P) \leq \textbf{M}(Q) \iff P \leq_M Q \text{ defines a partial order on Medvedev degrees.}$

Medvedev degrees

The classification problem

Medvedev degrees of subshifts

We can define Medvedev degrees of subshifts by identifying A^G with $A^{\mathbb{N}}$.

Medvedev degrees

The classification problem

Medvedev degrees of subshifts

We can define Medvedev degrees of subshifts by identifying A^G with $A^{\mathbb{N}}$.

Remark

Let *X*, *Y* be subshifts. Then $m(X) \ge m(Y)$ if and only if there is a computable function that maps *X* to *Y*.

Medvedev degrees

The classification problem

The classification problem

N.C (UJ)

Medvedev degrees

The classification problem

The classification problem

Which groups admit SFTs with $m(X) \neq \{0\}$?

Medvedev degrees

The classification problem

Which groups admit SFTs with $m(X) \neq \{0\}$? For a given group, what is the set

 $M_{SFT}(G) := \{m(X) : X \text{ is a } G\text{-}SFT\}?$

Medvedev degrees

The classification problem

Which groups admit SFTs with $m(X) \neq \{0\}$? For a given group, what is the set

 $M_{SFT}(G) := \{m(X) : X \text{ is a } G\text{-}SFT\}?$

In what follows I will present some results around this question obtained with S.Barbieri.

 $\langle https://arxiv.org/abs/2406.12777 \rangle$

Medvedev degrees

The classification problem

The domino problem

Proposition (N.C, S.B)

If *G* admits an SFT with $m(X) \neq 0$, then *G* has undecidable domino problem.

Medvedev degrees

The classification problem

The domino problem

Proposition (N.C, S.B)

If *G* admits an SFT with $m(X) \neq 0$, then *G* has undecidable domino problem.

The domino problem for G is the algorithmic problem of determining whether an SFT presentation corresponds to an empty set.

Medvedev degrees

The classification problem

Three questions about SFTs on groups

G admits SFTs with $m(X) \neq 0$?

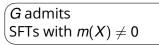
G has undecidable domino problem?

G admits weakly aperiodic SFTs?

Medvedev degrees

The classification problem

Three questions about SFTs on groups



G has undecidable domino problem

G admits weakly aperiodic SFTs

∜

Medvedev degrees

Non-cases

Proposition (N.C., S.B)

If *G* contains a finitely generated free group with finite index (virtually free), then $M_{SFT}(G) = \{0\}$.

These are the only known groups with $M_{SFT}(G) = \{0\}$.

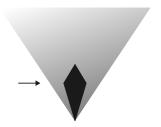
Medvedev degrees

The classification problem

An upper bound

Remark

If X is an SFT then m(X) is a Π_1^0 degree.



Medvedev degrees

The classification problem

Simpson's theorem

Theorem (S.Simpson 2012)

$$M_{SFT}(\mathbb{Z}^2) = \{ \text{ all } \Pi^0_1 \text{ degrees } \}$$

Medvedev degrees

The classification problem

Simpson's theorem

Theorem (S.Simpson 2012)

$$M_{SFT}(\mathbb{Z}^2) = \{ \text{ all } \Pi^0_1 \text{ degrees } \}$$

We extended this classification to some other groups by studying how Medvedev degrees behave by group operations (subgroups, quotients, and others).

Medvedev degrees

The classification problem

Translating properties

Proposition (N.C, S.B)

If *G* and *H* are commensurable, then $M_{SFT}(G) = M_{SFT}(H)$.

Medvedev degrees

The classification problem

Translating properties

Proposition (N.C, S.B)

If G and H are commensurable, then $M_{SFT}(G) = M_{SFT}(H)$.

Proposition (N.C., S.B)

If *G* and *H* are quasi-isometric and finitely presented, then $M_{SFT}(G) \neq \{0\}$ if and only if $M_{SFT}(H) \neq \{0\}$.

Medvedev degrees

The classification problem

Translating properties

Proposition (N.C, S.B)

If *G* and *H* are commensurable, then $M_{SFT}(G) = M_{SFT}(H)$.

Proposition (N.C., S.B)

If *G* and *H* are quasi-isometric and finitely presented, then $M_{SFT}(G) \neq \{0\}$ if and only if $M_{SFT}(H) \neq \{0\}$.

There are also relations for inclusions, quotients, translation-like actions, etc.

Medvedev degrees

The classification problem

Some new cases

Theorem (N.C, S.B)

We have

$$M_{SFT}(G) = \{ all \Pi_1^0 degrees \}$$

for the following groups:

Medvedev degrees

The classification problem

Some new cases

Theorem (N.C, S.B)

We have

$$M_{SFT}(G) = \{ all \Pi_1^0 degrees \}$$

for the following groups:

- 1 Virtually polycyclic groups that are not virtually $\mathbb Z$
- 2 Branch groups with decidable word problem.
- **3** $G \times H$ where *G* and *H* are infinite and have decidable word problem.

Simulation results allow a classification for sofic subshifts, the factors of SFTs.

Simulation results allow a classification for sofic subshifts, the factors of SFTs.

Theorem (N.C, S.B)

We have

$$M_{sofic}(G) = \{ all \Pi_1^0 degrees \}$$

for all *G* with decidable word problem and that "simulate" another group, such as:

Simulation results allow a classification for sofic subshifts, the factors of SFTs.

Theorem (N.C, S.B)

We have

$$M_{sofic}(G) = \{ all \Pi_1^0 degrees \}$$

for all *G* with decidable word problem and that "simulate" another group, such as:

- **1** Baumslag-solitar groups $BS(1, n) = \langle a, b : ab = ba^n \rangle$
- 2 The Lamplighter group (Bartholdi, Salo 2024)

Simulation results allow a classification for sofic subshifts, the factors of SFTs.

Theorem (N.C, S.B)

We have

 $M_{sofic}(G) = \{ all \Pi_1^0 degrees \}$

for all *G* with decidable word problem and that "simulate" another group, such as:

- **1** Baumslag-solitar groups $BS(1, n) = \langle a, b : ab = ba^n \rangle$
- 2 The Lamplighter group (Bartholdi, Salo 2024)
- Self-simulable groups with decidable word problem (Barbieri, Sablik, Salo 2022)

Medvedev degrees

The classification problem

Question

Question

Does every sofic subshift have an SFT extension with equal Medvedev degree?

Medvedev degrees

Question

Question

Does every sofic subshift have an SFT extension with equal Medvedev degree?

Question

In \mathbb{Z}^2 , does every sofic subshift have an SFT extension with equal topological entropy?

Preliminaries

Motivation 00000000 Medvedev degrees

The classification problem

The end

Thanks

Thanks ! $\binom{..}{\cup}$