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Abstract. In 1961 Wang translated a first order logic problem into a prob-
lem about tiling the plane with finitely many colored squares [7]. In dynamical
systems terminology this is a subshift. The subject evolved into a rich field
of interaction between recursive and dynamical notions, and indeed some dy-
namical questions have recursion-theoretic answers. Recent and important
examples being the characterization of entropies of multidimensional subshifts
of finite type as all Π0

1 nonnegative real numbers, and the class of factors of
subactions of these systems as the computable actions on effectively closed
subsets of the Cantor space [4, 3].

A classical result proved by Hanf and Myers states the existence of a finite
set of square colored tiles such that all correct tilings of the plane are uncom-
putable [2, 5]. This is the kind of complexity measured by Medvedev degrees:
a set has zero Medvedev degree if and only if it has some computable point.
This notion applied to subshifts interacts well with the dynamics, due to the
fact that morphisms are automatically computable. We obtain a dynamical
invariant for subshifts which in some aspects behaves like entropy, but instead
of statistical uncertainty it measures uncomptuability.

A theorem proved by Miller characterizes the class of Medvedev degrees
of effective subshifts on Z as all Π0

1 degrees [6]. In this talk I will show how
this result generalizes to a bigger class of groups, namely, all finitely generated
infinite groups with decidable word problem [1]. This is not a consequence
of Miller’s result, and the proof requires to effectivize a theorem proved by
Seward in geometric group theory. The proof has some byproducts of inde-
pendent interest. For example, that all computable groups satisfying obvious
constraints have a Cayley graph with a computable infinite Hamiltonian path.
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